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Abstract: In this paper, we exploit the analogyn@stn protein sequence alignment and image paiespondence to
design a bioinformatics-inspired framework for stermatching based on dynamic programming. This
approach also led to the creation of a meaningésirgraph, which helps to predict matching validity
according to image overlap and pixel similarityn&ly, we propose an automatic procedure to estimat
automatically all matching parameters. This workeisluated qualitatively and quantitatively using a
standard benchmarking dataset and by conductimgosteatching experiments between images captured at
different resolutions. Results confirm the validitfythe computer vision/bioinformatics analogy toelep

a versatile and accurate low complexity stereo hiagcalgorithm.

only does the bioinformatics analogy allow the
design of an efficient stereo-matching algorithmt, b
it also permits investigating the limits of
applicability of the algorithm in term of image
overlap and pixel occlusion. This is illustratedéhe

1 INTRODUCTION

Stereo matching is an essential step in the praafess
3D reconstruction from a pair of stereo images.
Since it has many applications including robot

navigation, security and entertainment, it has been
an important field of computer vision for several

decades. The problem of finding correspondences
between pixels belonging to a pair of stereo images

by producing dense disparity maps from images
captured at different resolutions. Finally, we also
propose a methodology allowing automatic
configuration of all algorithm parameters.

has been tackled using a wide range of techniques, 1he structure of this paper is organised as

such as block correlations, dynamic programming, fO||OWS. After reviewing rele\_/ant Ilter_ature, we

graph cut and simulated annealing; excellent resiew detalllour novel stereo matching algorithm. Then,

of the literature can be found in (Scharstein & experiments are conducted.on a benchmgrk dataset

Szeliski 2002) and (Lazaros, et al., 2008). Among to validate our method. Finally, conclusions and

these techniques, those based on dynamicfuture work are presented.

programming (DP) have proved particularly

attractive. They provide good accuracy and are 1.1 Related Work

computationally efficient (MacLean, et al., 2010):

they are able to find the global minimum for First applications of DP to the problem of stereo

independent scanlines in polynomial time. matching produced sparse disparity maps using edge
A|though the design of some of these DP information (Baker & Binford 1981) and (Ohta &

algorithms was inspired by that of Needleman and Kanade 1985). In order to generate dense maps,

Wunsch (1970), e.g. (MacLean, et al., 2010), which correspondences between scanlines were computed

was developed for alignment of protein sequences,using pixel colour values. This task highlighted

to our knowledge, no author has exploited fully the complications which were not present when dealing

analogy between protein and image correspondence@nly with edges: they include image noise, inditin

In this paper, we present a DP algorithm for stereoimage features and half occlusion, e.g. objecttpoin

matching inspired by bioinformatics techniques. Not Which can be seen only in one of the two images.



Statistical frameworks have been proposed togave researchers the opportunity to compare
explicitly tackle these issues (Geiger, et al.,2)99 sequences to establish evolutionary relationship
(Belhumeur, 1996), (Cox, et al., 1996) and (Torr & between proteins. Since protein sequences have an
Criminisi 2004). Alternatively, (Bobick & Intille  average length of 400 characters and mutate through
1999) suggested to pre-process images by producingsubstitution, insertion and deletion of charactérs,
a ‘disparity-space image’ based on Dblock alignment of a protein pair is not a trivial matter
correlations and, then, use DP to find the optimal The ‘Needleman—-Wunsch’ algorithm (Needleman &
correspondences. In addition to rely on additional Wunsch 1970) has provided an effective automatic
free parameters, all these approaches requirednethod to produce an exact solution to the global
additional calculations, which affect significanthe alignment of two protein sequences. It is stilkla
computational complexity of the stereo matching core of the latest search engines (Altschul, et al.
process. 1997) and (Mackey, et al., 2002), which allow
Since traditional DP algorithms compute line- finding the best alignment between a given protein
based global optimisations, they do not take into sequence and a large database such as UniProt
account vertical consistency between scanlines.(Leinonen, et al., 2004), which contains more than
Although some early methods attempted to address20 million entries.
this issue (Ohta & Kanade 1985), (Belhumeur, The ‘Needleman—Wunsch’ (N&W) algorithm is
1996), (Cox, et al.,, 1996) and (Bobick & Intille based on a dynamic programming approach which
1999), they only refine results produced from optimises the global alignment of character strings
scanline optimisation. In order not to bias according to a scoring function taking into account
optimisation towards one direction, e.g. scanlime, possible mutations. In practice, alignments are
new class of DP algorithms, which can be applied produced by, first, filling in a scoring matrix and
efficiently to tree structures, has been recently then, ‘backtracking’ from the highest score in eith
proposed (Veksler, 2005) and (Deng & Lin 2006). the last column or the last line of the matrix.
Results show they are significantly more accurate  Each matrix cell stores the maximum value
than scanline based methods with only a marginalwhich can be achieved by extending a previous
increase of computational cost. alignment (see Table 1). This can be done either by
In the last few years, the main emphasis has beeraligning the next character of the first sequenith w
on designing real-time solutions by adapting the next character of the second sequence or
previous DP algorithms (Forstmann, et al., 2004), extending either sequence by an empty character to
(Wang, et al.,, 2006) and (Salmen, et al., 2009). record a character insertion or deletion (‘indel’).
Eventually, the first FPGA hardware implementation In the case of character alignment, deagonal
of a DP-based stereo matching algorithm has justmotion in the matrix, the score depends on their
been proposed (MacLean, et al.,, 2010). Its values. A rewardmatch, is allocated if the two
performance demonstrates DP-based approachesharacters are identical, otherwise a penalty,
provide the best compromise between accuracy andmismatch, is applied since this highlights a mutation
speed. (substitution). When a sequence is extended, i.e.
from eithernorth or west, this is also penalisedap,
because it reveals that a mutation (insertion or
2 METHODOLOGY deletion) occurred. While completing the matrix, in
addition to the score of each cell, the directipn(s
from which the score is coming must be recorded
since they are used in the ‘backtracking’ process.
The scoring matrixM, is initialised by setting
the initial score (top left cell) to zero and thestf
line and column according to cumulateghp
penalties. ThenM is filled in using the following
pseudo-code:

We propose a new matching algorithm particularly
suitable for the scanline to scanline corresponglenc
problem, which can be applied to pairs of rectified
stereo images. First, we introduce the bioinforozati
technique on which it is based. Then, we explain
how it can be extended to image processing.

2.1 ‘Needleman-Wunsch’ algorithm for i = 1 to Iength(sequencel)
{

The publication of the first ‘Atlas of Protein for j =1 to Iength(sequence2)

Sequence and Structure’ (Dayhoff, et al., 1965) north < Mi-1.j) +ga

which comprised the sequences of 65 proteins, i £ ( characterl’J: Chgrgcterz)

arguably funded the field of bioinformatics. This diagonal <- Mi-1,j-1) +match



el se

and deletion of characters). Consequently, the N&W

endidif agonal <~ Mi-1,j-1) +m smatch approach is a very good starting point for deveigpi
west <- Mi,j-1) +gap a stereo matching algorithm, as seen in (MacLean, e
Mi,j) <- max(north, diagonal, west) al., 2010). The novelty of this work is that, fjrt

} takes full advantage of the protein sequence/swanli
analogy by refining the N&W based stereo matching
algorithm with the relevant extensions proposed in
the field of bioinformatics. Secondly, this analagy
exploited further by producing a graph which
suggests the limits of applicability of the algbnt

in term of image overlap and pixel occlusion.

}

Once the matrix is completed, the optimal alignment
is extracted using the ‘backtracking’ process (see
Table 2). First, the highest score cell in eitheg t
last column or row is identified. Then, using
direction information, a path to the origin of the
matrix is constructed. Finally, this path is coredr
into an alignment. It is important to note that,

although the algorithm always finds the best global Scoring matrices are filled in using scoring fuant
alignment(s) for a given scoring scheme, there may,yhich quantify the cost of possible mutations.
me several alignments with the optimal score. Different substitutions in protein sequences affect
. The whole process is illustrated with an example gitferently protein functions. However, this is not
in Table 1 and 2, where the following scoring (efiected in the match/mismatch dichotomy used in
scheme is usednatch= ?,‘mlsmatch=.o and gap=-1.  Ngw. This was addressed by customising mismatch
Representing gaps by ', the resulting alignmenti  ;ogts according to estimated rates of mutations
EDECE between pairs of characters (Dayhoff, 1978) and
AD- CE (Henikoff & Henikoff 1992). Although it would be
possible to perform a statistical study to estabte
mutation frequency between pixel values, here we
use a linear model which is context independent.

2.2.1 Scoring matrix

Table 1: Extension of initial alignment. The nevll seore
is shown in blue; 3 possible scores are showneemgyr

N E D E The mismatch penalty of aligning a pair of pixels,
- 0o | —1] -2 .=3 wherep; andp; are the_ir v_alues, is expressed by t_he
A 0 | oo | o2 absolute value of their difference, so that extegdi
=1 < —— an alignment along the diagonal alters the global
D -2 o1 2 11 score by:

match — |p; — p;
Table 2: Completed scoring matrix and optimal path Ip: P]|
highlighted in red. . . , .
In genetics, ‘indels’ are rare and dramatic events

- E D E C E which usually have negative effect on protein
N functions. Although the N&W can penalise this type
ry N0 oo oz o3 | s of mutations by associating them with a higher cost
— T < > than substitutions, it does not take into accobat t
D —2 &_1 2 |1 |50 -1 an ‘indel’ of n characters is much more likely than
C =34 >=2 b2 M3 |2 indels’ of one character. For this reason, théiahi
E —4f =1 ot |3 | 32 |5 scoring scheme was completed with a lower penalty

for extended gapsgap, which encourages gaps to
cluster. We believe this concept is also valid in
stereo matching where one would expect that a few
An analogy can be made between aligning protein occlusions of several-pixel length would be more
sequences and matching pixels belonging to frequent than a large number of 1-pixel occlusions:
scanlines, since both tasks aim at establishingdue to the nature of stereo matching, different
Opt|ma| Correspondence between two Strings of Ca..mel’a V|eWPO|ntS Cl‘eatFT' occlusion areas a..SSOC|ated
characters. In addition, the ‘right image of arete  With each object present in a scene. Accordingly, w
pair can be seen as a mutated version of the ‘left’implemented extended gaps in our algorithm. _
image: noise and individual camera sensitivityralte As a consequence of these changes, our scoring
pixel values (i.e. character substitutions); and Matrixis filled in using the following pseudo-code
different view angle reveals previously occluded

data and introduces new occlusions (i.e. insertion

2.2 Application to stereo matching



for i = 1 to |l ength(sequencel)

{

interest. Since usage of a neighbouring line da¢s n
ensure that the scanlines are related — there may b

Eor J = 1 tolength(sequence?) horizontal edge -, we impose that the pixel
mismatch = -|1L(line, i) -IR(line, j)]| sequences used as constraints are composed of the
if( Mi-1,j) is agap) mean values between the scanline and neighbouring

north <- Mi-1.j) +egap line pixels. For instance, in addition to the afiggnt
el se p ! hgm
north <- Mi-1,j) +gap between the scanling, on the left image {l and its
endi f S _ corresponding line on the right one),(rwe can
id:c ?gﬁ/{‘ia' j _<‘) "’i('s‘a' Jg;lp) )”mt ch +nmi smat ch calculate a constraining alignment betweemt the
west <- Mi,j-1) +egap average betweenand r.;. Those solutions present
el se in both alignments are more likely to be a correct
west <- Mi,j-1) +gap solution. Following this reasoning, using all
‘;,?f"lf) < max(north. diagonal . west) combinations between Y| (l+l.1), (a+1), (I
} rHitlig), and (1), (+niea), (Gatn), (hatri+rig), and
} reading scanlines from right to left, a total numbg

32 constraints are generated.

In practice, in order to reduce the added
_ _ ) computational cost of this strategy, we generatg on
The N&W backtracking process is straight forward. constraining alignments for the subsections of
identified. Then from that cell to the origin ofeth  sybsection, each initial solution is scored aceuydi
stored direction information associated with each egch the same solution. The solution with the
cell. This process usually produces a set of optima highest number of votes is selected. In the case of
alignments, see Fig. 1. Consequently, new graw, itis chosen at random.
information needs to be supplied to allow selecting
single solution. In bioinformatics, this is usually
resolved by providing additional alignments
involving other related sequences. They are used to
produce a single multiple alignment which optimises
all pair-wise alignment constraints (Higgins, et, al
1994), (Notredame, et al. 2000), (Edgar, 2004) and
(Lassmann & Sonnhammer 2005).

Several strategies have been offered to deal with
this issue in the context of stereo matching. Many
suggest selecting the ‘smoothest’ solution in tefm
horizontal and vertical discontinuities along and
across scanlines (Cox, et al., 1996) and (Bobick &
Intille 1999). Some are based on high confidence
matches, such as edge intersections, which are
identified during a pre-processing phase. These& goo
matches are exploited as extra constraints in the
choice of a unique solution (Bobick & Intille 1999)

and (Torr & Criminisi 2004). which can be followed to produce an optimal alignine

. .In this. work, we follow the traditi.onal. Zoom on an area with alternative paths is proviethe
bioinformatics approach. The general principle is (op right of the figure.

that each scanline can be seen as a mutation lof bot

the previous and the following lines. Therefore, 2 2 3 Scope

alignments involving these lines can be used to

select among several solutions by enforcing someTraditional stereo matching algorithms are applied

vertical discontinuities. on rectified pair of images which share a ‘suffitie
However, this approach is only valid if those amount of overlap. To our knowledge, no

lines are, indeed, mutations of the scanline of statistically reliable study has quantified that

2.2.2 Backtracking

Figure 1:Paths returned for a pair of scanlines. Colours —
legend given in the bottom left- show valid direcis)



amount. Since we use a bioinformatics-inspired  When several optimal solutions are returned by
framework, we propose to get an insight about this our algorithm, the selection of a unique solutien i
by investigating the confidence which is given to achieved by applying the 32 different constraints
protein alignments according to the amounts of imposing scanline continuity. Finally, when
overlap and mutations. specified, disparity maps are post-processed by a
Due to the availability of protein sequences, e.g. median filter (MF), which has been shown as a
more than 20 million entries in UniProt (Leinonen, powerful and simple way to improve results
et al.,, 2004), and its usage in major international (Mihlmann, et al., 2002).
projects such as the Human Genome Project
(International Human Genome  Sequencing 3.1.1 Automatic parameter configuration
Consortium, 2001), the validity of sequence _
alignments have been the subject of statistical andFirst score parameters, i.e. match, gap and extende
experimental studies (Karlin & Altschul 1990), 9ap, must be configured. Since they are sensitive t
(Pearson, 1998) and (Rost, 1999). Those statisticdmage characteristics, they need to be customsed f
were integrated in the main sequence alignment€ach stereo pair. If the actual disparity map is
servers (Altschul, et al., 1997) and (Mackey, et al known, an optimisation function can be applied to
2002). The outcome of these studies can bemaximise matching accuracy. Although such
illustrated by the graph produced by Rost (Rost, Process allows evaluating the best possible
1999), where alignment meaningfulness is expressedPerformance of an algorithm, it does not have
according to the number of characters which can bePractical applications. _
aligned (i.e. overlap) and the percentage of Therefore, a methodology for automatic

characters with identical values (see Fig. 2). parameter configuration is required. We propose to
generate a pseudo ground truth disparity map by
A establishing sparse pixel correspondences using the

SIFT algorithm (Local Invariant Feature Transform).
Key points on corresponding scanlines are paired
and used to calculate disparity values (code availa
at www.cs.ubc.ca/~lowe/keypoinjs/ However,
since only a few pairs are detected (fewer than 100
for images from the Middlebury dataset), this aditi
set is not suitable for parameter optimisation. In
order to increase this number, Delaunay
> triangulation is applied to estimate the dispadfy

# of aligned characters (i.e. overlap) more pixels (see Fig. 3). Using the key points as
Figure 2: Expression of protein alignment meanitrgfas vertices, homographic transformations between both
according to the number of characters which can be meshes can be calculated for each triangle. These
aligned (i.e. overlap) and the percentage of charaevith transformations are then used to estimate a laafer
identical values, adapted from (Rost 1999) of disparity values. Obviously, this approximation

) can only be considered as valid for small triangles
In this paper, we propose to produce such a canve f i this work, only triangles whose sides are shorte
stereo pair images and infer from it if alignmeats 55 15 pixels are used. As Table 3 shows, those
meaningful. disparity values are very accurate since they laawve

average pixel error below 0.5. Consequently, such

3 RESULTS disparity maps can be considered as ground truth
and used for parameter optimisation.

Meaningful alignments

% of characters with identical values

3.1 Experimental setup
Table 3: Automatic ground truth generated for patam

In order to validate our algorithm, experiments are configuration and its estimated error.
conducted using the benchmarking framework from

Middlebury (Scharstei et al. 2002-2003), which has #of di,s‘ia”ty Average
been largely accepted by the computer vision Cones pg?f e(r)r_g;
community for objective comparison of stereo Teddy 190 0.46
matching algorithms. Venus 211 0.27

Tsukuba 600 0.45




‘hu et B i s, 3 = S
Figure 3: Delaunay triangulatioof left and right image
using the generated pairs of key points.

3.2 Performances
3.2.1 Stereogpair correspondences

Fig. 4 shows raw disparity maps, i.e. withc
smoothing, obtained for the images used in
Middlebury framework.In Table 4, quantitative
resultsare provided to validate c algorithm. The
table quantifiesthe introduction of extended g:
(EG) and the procede for automatic paramet
selection (AP). In addition performances a
provided for state of the amethods the reference
for scanline-based D@obick & Intille 1999, tree-
based DP which addresses indeanline coheren
in the optimisation proces¢Veksler, 2005) an

(Deng & Lin 2006), and asegmer-based stereo

matcher (Klaus et al. 2006).

Figure 4:Disparity map.

When optimising parameters using the ground t
disparity map as other methods do, in its n
advanced configuration (i.e. ouapproach +E(
+MF) the proposed framework outperfor
Bobick's Bobick & Intille 199¢). Although, in
terms of accuracy it cannot compete with the n
computationally expensive approaches, ours ¢

operate in real time as showy (MacLean, et al.,
2010).

Analysis of Table 4 confirms that tlinclusion
of extended gaps suits the natureocclusions since
performances are significantly impro\. Moreover,
as expected, the application ofmedian filter on
disparity maps, whichintroduces some inter-
scanline coherence, increas accurac. Finally,
results obtained sing the AP configuratio
demonstrates that, although performances
degraded compared to those produced by a s)
using optimal parameters, they are ssatisfactory.
For example, ouapproach outperformBobick’s
(Bobick & Intille 1999 in 3 image pairs out of -

Table 4:Performance comparis.
EG: with extended ga

AP: with automatic parameter selec
MF: with median filte

% Tsukuba | Venus Teddy | Cones | All
(non occ) (non occ) (non occ) (non (bad
occ) pixels)
Klaus et
al. 2006 1.11 0.11 4.22 2.48 4.23
Veksler
2005 1.99 1.41 15.9 10.0 11.7
Deng &
Lin 2006 2.21 0.46 9.58 3.23 6.82
Bobick &
Intille 4.12 10.1 14.0 10.5 14.2
1999
Our
approach 6.67 12.0 15.5 12.7 18.6
Our
approach 6.74 10.7 14.1 11.0 16.7
+EG
Our
approach
+EG 4.63 7.40 10.7 7.75 13.4
+MF
Our
approach
+AP +EG 7.61 7.87 10.8 8.59 14.9
+MF

These resultonfirm the validity of the analoc
made between stereo matching and protein seqt
alignment.

3.2.2 Stereo matchingneaningfulnes:

Following the efforts of Rost (Rost 199%who
experimentally defined a curve under which prc



alignment may become meaningless (see Fig. 2), wethe shape of these curves is very similar to Rost's
have produced a similar graph plotting accuracg as (Fig. 2), which reinforces the value of our analogy
function of image overlap and pixel similarity to between stereo matching and protein sequence
express the meaningfulness of matching an imagealignment. As in Rost’s case, we believe the giaph
paur. Fig. 5 can estimate the meaningfulness of stereo

In this section, we consider that the alignment correspondences using image overlap and the
between two scanlines L and R is meaningful if the n,mber of identical pixels as parameters.

optimal score obtained for this alignment according
to the scoring matrix is the highest score thatah c
achieved against any scanline of the right image.

In the original paper by Rost, results were plotted

in a graph showing the number of residues aligned similarity between images where the second one was
versus the percentage of character similarity.un o y 9

particular case, we can assimilate the number oft"]‘kilr_1 V_V'th a zoom of 2x, 3X’d4)é anhd 5x. Using the
aligned characters as the number of pixels matchegPredictive accuracy suggested by the curve set, one

between the images, or equivalently, the percentage®@n infer that matching with 2x or 3x image should
of overlap between the images. Regarding the provide meaningful results, whereas results obtkine

second axis, it can be understood as the percentagfor pairs including a 4x or 5x zoomed image should

of identical pixels existing between both images. be meaningless. These predictions are tested in the
next section.

In order to test this hypothesis, we propose to
predict the outcome of matching image pairs
captured at different resolution. On Fig. 5, we dav
plotted in red the estimated overlap and pixel

% 3.2.3 Matching images captured at different

80

o resolutions
01 — First, to evaluate the predictions made from the
% — meaningfulness graph, the ‘cone’ image and its

40 . .
zoomed versions were processed using our

algorithm. Here, the extended gap feature is
deactivated since the assumption it is based oaotis

‘ valid when dealing with images captured at différen
80 100 resolutions. Each scanline of the standard image wa
aligned against all scanlines of the zoomed image.
The alignment with the highest score in the scoring
matrix is then automatically selected to determine
matching scanline pairs.

Fig. 7 shows the results of this procedure for
different zoom values. As expected, the
performances worsen with zoom increase. In the
case of x2 and x3 zooms, correspondences between
lines are usually correct or shifted by only a few
lines, correlations between actual and predicted

30

20 40
10 +

Percentage of identical pixels

0

0 20 Peréol-\tageufnégrlap

Figure 5: Scanline correspondence errors accorttng
overlap and pixel similarity. Red dots show where
matching experiments between an image and its zdéome
version (from 2x to 5x) would fit on this graph.

Unlike in bioinformatics, pixel value changes have

continuous nature, Consequently, the estimation of
pixel similarity between a pair of stereo images
would depend on a threshold. In order to have an
absolute control of all variables, the conditiorfs o corresponding scanlines are 0.997 and 0.643

the matching experiments were simplified. Our reqpactively. However, matching using x4 and x5
algorithm was applied to match an image with a zooms produce associations which are often
tranformed version of itself. Pixel identity was meaningless as quantified by the calculated
controlled by adding ‘salt and pepper’ to the image correlations, i.e. 0.495 and 0.209 respectivelyeseh
while the percentage of overlap was simulated by experimental results confirm the predictions
removing the required number of pixel columns. On formulated using the meaningfulness graph.

Fig. 5, points are connected according to the  Although finding meaningful correspondences
measure accuracy in terms of percentage ofbetween lines is essential for accurate stereo
scanlines matching the correct scanlines (seefffig. matching, it is not sufficient to assess the quaiit
Thus, a set of curves were created highlighting the pixel matching itself. Consequently, we undertook a
image pair characteristics required to obtain second experiment where we calculated pixel

matching errors between 6% and 40%. As expectedcorrespondences between the left and the right
images of the ‘cone’ stereo pair, where the right



image was subject to a zoom transformation. Here,that good performance can be obtained when there is
we assume that line pairings between the left anda ratio of 2 between the resolutions of a pair of
right images are known. In practice, if dealinghwit images.
static cameras, this can be calculated if the zoom Another contribution of this work is an automatic
ratio is known. Otherwise, the procedure describedProcedure to estimate automatically all matching
in the previous experiment can be used to initadis  Parameters. Conducted experiments showed that
line pairing optimisation algorithm. Colour images high quality sparse pixel correspondences generated
in Fig. 6 show pairs of images, i.e. a) and b) wher by the SIFT_aIgonth_m could be extended using a
the lines of the left image were removed so thatbo D€launay triangulation approach to generate a
images have the same number of scanlines. Image®2rtial disparity map  suitable for parameter
c) and d) display calculated and actual disparity optimisation. . .
maps. In agreement with the previous experiment In future wprk, we .|ntend to exploit further the

' \ 'computer  vision/bioinformatics  analogy by
only usage of X2 and x3 zooms produces me"’”_1'ngfulconsidering video frames as leaves of a phylogeneti
results, even if, in the case of x3 zoom experiment

: tree.
the accuracy is poor.

s 8
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Figure 7: Correspondences between lines on the athnd
and zoomed images for zooms of a)2x, b)3x, c)4x and
d)5x: calculated (red) and ground truth (blue).
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