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Abstract: In this paper, a novel framework for depixel matching based on dynamic programming tioéuced.
Unlike most techniques proposed in the literatorg, approach assumes neither known camera geometry
nor the availability of rectified images. Under Buconditions, the matching task cannot be reduoced t
finding correspondences between a pair of scanliespropose to extend existing dynamic programming
methodologies to a larger dimensional space bygusiBD scoring matrix so that correspondences legtwe
a line and a whole image can be calculated. Aisessing our framework on a standard evaluaticasedat
of rectified stereo images, experiments are comdlcn unrectified and non-linearly distorted images
Results validate our new approach and reveal theatitity of our algorithm.

1 INTRODUCTION is sometimes either impossible or impractical,
whereas the computational cost of accurate

rectification models prohibits their usage in real-

time application. Moreover, none of these methods
is suitable when a camera lens displays unexpected
distortions, such as those generated by raindrops,

Dense pixel matching is a low-level process whgh i
involved in many computer vision applications
including navigation, security, entertainment and
video surveillance. Not only is it often an essainti
step in 3D reconstruction from a pair of stereo Weatherproof covers or dust.
images, but it is also used in object detection and !N this paper, we propose a novel DP-based
video tracking, especially when the camera is not dénse pixel matching algorithm which can handle
fixed (Note, et al., 2006) (Yaguchi,, et al., 2088)it unrectified and non—llngarly distorted images. Afte
is the case with camera phones (Yin, et al., 2007). & State-of-the-art review, we detail our novel
Recent reviews describe and analyse the manyMatching algorithm. Finally, it is validated with
algorithms which have been proposed to address thi€xPeriments conducted on unrectified images and
matching process (Scharstein & Szeliski, 2002) IMmages displaying significant deformations.
(Lazaros, et al., 2008). Most approaches performing
dense pixel matching assume images have beent-1 Related Work

rectified so that their task can be reduced toifigd

correspondences between a pair of scanlines. Amond>enerally, pixel matching approaches (Barnard, et
these techniques, those based on dynamical-* 1982) (Dhond, et al., 1989) (Brown, et al.92p

programming (DP) are of particular interest since (Jones, et al., 1997)(Scharstein & Szeliski, 2002)
they combine good accuracy with low computational aSSUme that images have been rectified so that the

complexity as demonstrated by a recent real-time t@sk is simplified tq establishing corre_s_poqdences
FPGA hardware implementation (MacLean, et al. between corresponding rows of the rectified images.

2010). Their main drawback is that they require the 1he standard process for rectification is homogyaph
knowledge to project images onto a common based, also called planar rectification, where ienag
coordinate system. Although, in many applications Planes are transformed so that the corresponding
those transformations can be estimated by eitherSPaceé planes coincide (Ayache & Hansen, 1998)
camera calibration or image rectification, calibat (Hartley, 1999). A major limitation of this clas$ o



approaches is that, if epipoles are located in the(MacLean, et al., 2010) (Scharstein & Szeliski,
images, planar rectification produces infinitelyge 2002) (Brown, et al., 2003) (Tappen & Freeman,
images. This problem has now been solved under2003). Their low intrinsic computational complexity
specific conditions by using either cylindrical Ro  even led to a recent FPGA hardware implementation
et al., 1997) or spherical rectifications (Pollefegt (MacLean, et al., 2010).

al., 1999)(Wan & Zhou, 2008). In addition to adding In this paper, we propose a novel dense pixel
significant computational complexity, these methods matching algorithm based on the DP paradigm
still overlook issues such as sub pixel coordinates which can operate with unrectified images without
infinite epipoles (Lim, et al., 2004) and the non camera calibration.

preservation of conjugate epipolar polarities (Qram

2001). An alternative to these approaches is g ful

calibrate cameras to estimate the appropriatep AL GORITHM

transformation between images. However, since this

process is usually manual or relies on very specifi We propose a novel dynamic programming

Ienwronments, ||Itsthusage hta;]s (\j/er(yj/ stror(ljg Ilmfl_ta(tjl_ons algorithm which is able to establish dense pixel
n any case, all ineseé methods depend on finding acorrespondences between two unrectified and/or
set of accurate matCh'T‘g points, resampling IMageSyistorted images. Since our method is based on a DP
and appropriate lens distortion models, of all vahic

Hect th tchi ; M th approach, it relies on two main steps: the stofge
artect the matc |r;]g perﬂc:rmance.th c&reover, ¢ ?rﬁ local calculations and their reuse to produce aajlo
are ~scenarios where these methods  are tolallyg,) yion |n this section, we first describe hoB2
inadequate. For example, visual tracking is sehjous

- scoring matrix is computed. Then, we propose a
degraded by weather conditions when the PreSenCe qfinement of these calculations, i.e. introductadn

of water drops produces undesirable temporal andthe extended gagoncept. Finally, we detail the

Il\c;calise%g(i)jqrtic_)ns_l (El‘am”_'”f." et aI.,t 2007) (Garg backtracking phase which allows generating optimal
ayar, ); similarly, vision systems on space global correspondences.

exploration rovers are affected by dust accumutatio It is important to note that, although the usage of

(Wigft?]n’ ethal., 2(}05)'. d el tchi 3D matrices within DP based pixel matching
. ough —periorming dense —pixel matching algorithms was proposed by Sun (Sun, 2002) (Sun-2,
without prior image transformation is an attractive 2002), this was only a means of efficiently calteila

prop05|;[|(zjn,Th\_/ery ;?W algorl(tjr:jms hdave. bee_.\tr;] the correlations over a sliding window. This did no
suggested. 1his problem was addressed using eithel ; aqq the requirement of image rectification and

multi-resolution image correlation (Duchaineau, et - ; ;
al., 2007)(zZhengping, 1988) or a genetic algorithm was only suitable for scaniine matching.
(Tippetts, et al., 2010). It was also suggestedl ¢ha
self-organizing neural network could potentially be
used under these conditions (Vanetti, et al., 2009)
Unfortunately, all these methods display high
computational complexity and recursivity, which
makes them unsuitable for real-time and hardware
implementations.

This review highlights the limitations of
rectification and calibration procedures and shows
that, currently, bypassing this step leads to &mist
with high computation costs. In order to address th
a novel algorithm could be designed by extending
one of the approaches developed to tackle in real-

2.1 3D Scoring Matrix

Similarly to many dynamic programming-based
algorithms designed for scanline matching (Geiger,
et al., 1992) (Belhumeur, 1996) (Cox, et al., 1996)
(Torr & Criminisi, 2004), the first stage of our
algorithm fills in a scoring matrix according to a
given scoring scheme. However, our approach does
not restrict itself to finding pixel correspondesace
between scanlines, but between a scanline and an
entire image. The strength of this scheme is that
images do not need to be rectified and matching can
time the simpler task of scanline matching be achieved even when one of the images displays

(Forstmann, et al., 2004) (Gong, et al., 2006) @tu, impqrtar]t distortions. Consequently, a scar_lline on
al., 2009) (Salmen, et al., 2009) (Wang, et alQ&0 the first image does not need to _match a stralght I
(Yang, et al., 2006). Among them, techniques basedbUt may correspo_nd to a curve in th_e second image
on DP seem particularly suitable: although they are (see Flgure_ 1). Slnc_e this algorlthm_ls an extemsio
not the most accurate, performance analysis hasOf an algorithm designed for matching stereo pairs
shown they provide an excellent compromise of images (Authors, 1111), we use the same

between accuracy and speed (Cox, et al., 1996)convention: the_first_ and second images are referre
as the left and right images.



Figure 1:Views of the same scene captured using diffe
camera lenses. Green curves: guaituth correspondenc
between 3 scanlinex image a) and pixels of ima b).

First, a 3D scoring matrix is generated for e
scanlines of the left image. Assuming the left ima
scanlines have a length L and the dimensions ¢
right image are WxH (width x height), the size loé
scoring matrix,sg is LxWxH. A matrix cellcijk is
defined by three coordinates, whi represents the
elements of the scanline apdndk the column and
line of the right image (see Figure
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Figure2:3D scoring matri

Matrix cells store the maximum value which ¢
be achieved by extending a previous alignm
When a DP approach is used to f
correspondences between two scanlines,
alignment can only be extended in three manr
pixels of the left and right imagemay have similar
values, i.e. there ismatch or one of the pixels me
be occluded in either the first or the sec
sequence, i.e. gap has to be introduced. Here,
alignment finishing in the celkik, can be extended
in seven ways.

Since a matcimeans that a pixel of the scanli
corresponds to a pixel in the image, the matc
cell must be contiguous to the previous ccijk.
Moreover, dynamic programming approach requ
moving forward in order to come to an e
Consequently, a match caoccur in either cel
Ci+1,j+1,k, Ci+1,j+1k+1 OF Ci+1,j+1,k-1, Which corresponds 1
a correspondence between the next pixel in
scanline i+1), and respectively, the next pixel in

next column j+1) in the same linek), matchm, the
line below k+1), matchme, or the line abovek-1),
matchms (see Figure 3).

Since a change of line and column me
moving by a distance af2 pixels in the image, thi
implicitly adds a virtual gap o(V2 — 1) pixels.
Therefore, this type of match should be |
rewarded than a match along i+1,j+1,k direction.

If matches between pixels cannot be found, a
has to be introduced in either the image or
scanline. A gap in the image indicates that a #te
pixel does not have any correspondence in
image: this pixel is occluded in the right ima
Consequently, the alignment is extended by mo
to the next element in the scanline, ci+1k (gap
g4) (see Figure 4).

K

0 k- "/é’br;‘h,age
< —
1
i1 J
i+1 ‘I ’ c'|+1,j+1,k+1
R —— +1,j+1,k
) ) j* +1,j+1,k-1
c
=
@
Q
"

scanline X

Figure4: Gap in the imac.

Alternatively, image pixels may be occluded
the left image. This implies not moving in th
direction, i.e. the displacement in the matrix
towards eithercij+1x (gap gl), cij+k+1 (gap g2) or
cij+1k-1 (gapgd) (see Figure b Similarly to the cas
of matching, a change of line implies adding
extra gap o{v2 — 1) pixels, which also needs to
penalised.

As shown, each cell of the 3D scoring matrix
be accessed from 7 directions. During the fill
process, for each of these directions the celleva



calculated according to the cost of the move, i.e. As a consequence, the time complexity of the
match or gap costs: the highest value and theproposed algorithm i@ (LW H) per scanline.
direction(s) it is coming from are stored in thdl.ce

This information is used in the backtracking praces 2.2 Extended Gap

K

In the initial scoring scheme, each individual ¢S

TIEHE 73y, e

0k a fixed penalty. However, due to the nature ofester
] images and successive video frames where different
i1 Sl perspectives create partial object occlusions,
occluded pixels tend to cluster instead of being
i1 J equal]y di_stributed across an i_mage. We propose to
o i 1 exploit this observation by introducing a lower
£ penalty for new gaps which extend existing gaps. An
§ affine gap penalty is used where the initial gap
(7]

I opening penalty is set gtand each extension of a
gap increases the total penalty by a lower vadue,
Figure 5: Gap in the scanline. (e<g). Consequently, a gap of lengthwill only

encounter a penalty of + (I — 1)e in this new
In order to define the costs of these possible scheme.

moves, we introduce 3 parametemsis the reward

for a perfect matchy is the penalty for a single gap, 2.3 Backtracking

andA is the penalty for an imperfect match, which is

set at the absolute value of the intensity diffeeen  Once the 3D scoring matrix has been filled, global

between the scanline pixal(i), and the image pixel,  alignment(s) between the scanline and the image are

Im(@,k). recovered by backtracking. This is achieved, fiogt,
A=|s@) —Im@G K| (1) retrieving in the matrix cell with the highest seor

Using these parameters, the cost of adding angptained for a global alignment. Then, from thdk ce
extra gap of(v2 — 1) pixels, p, can be expressed using the stored direction information, one or more
by: paths are reconstructed to the origin of the matrix

p=|V2-1)(m-9)| and converted into alignments.

Before starting the filling process, the matrix Global alignment scores are found in four planes
needs to be initialised. First, the initial alignmhe of the matrix (see Figure 6). If the last pixelthé
score is set to zero. This involves extending the scanline corresponds to a pixel of the image, dloba
initial matrix of dimensions LxWxH with the planes scores are recorded in the planeL (orange plane,
(0,J,K) and (1,0,K). Since the alignment can start Figure 4). Alternatively, the end of the scanlinaym
from any line of the image, cells with coordinates not have any correspondence in the image because it
i=0 andj=0 are filled with zeros. Then other cells belongs to a non overlapping region. As a
from the planeq0,J,K) and (1,0,K) are initialised consequence, the last scanline pixel with an image

according to cumulated gap penalties. pixel match would be located on one of the borders
Finally, the scoring matrix,sc is filled in of the image. This score could be read in either th
according to the following pseudo-code: planek = 1 (yellow plane, top of the image), the
for i=1tolL planek = H (green plane, bottom of the image) or
for j=1 to W . . .
for k=1 to H the plang = W (purple plane, right of the image).
A —|s(i)-1n(j,k)| From the cell(s) with the highest score within
m — sc(i-1,j-1,k)+m A these four planes, global alignment are discovered
m < sc(i-1,j-1,k+1)+mA-p by backtrackinginside the matrix using the stored
m — sc(i-1,j-1,k-1)+mA-p information regarding the direction(s) the score of
91 < sc(i,j-1,k)+mg the cell of interest is coming from. Since a cebre
92 < sc(i,j-1 k+l)+mg-p comes from the highest value among seven
g3 < sc(i, -1 k-1)+mg-p directions, two or more directions could lead to
g4 < sc(i-1,j,k)+mg b .
sc(i.j. k) < max(ni,n2, 8, g1, g2, g3, equal maximum  scores. Cor_lsequently, during
g4) backtracking several optimal alignments could be
ende?grfor produced. Although strategies, such as choosing the

end for solution which is the most consistent with thishodf



previous scanline, can be used to adopt the
likely path, in this work, a unique alignment
generated by selecting at random one of the g
solutions.

V‘

Figure 6: Loc#on of global alignment scor.

3 EXPERIMENTAL RESULTS

In order to validate the proposed algorithm a ge¢
experiments were conducted. First, the algorithi
evaluated using a standard stereo matc
evaluation framework using rectified images. Tt
the potential of our approach is demonstratec
processing unrectified and ndinearly distortec
images.

Although parameters are optimised for e
stereo pair using the rectified image scenariacaly
values are m=256, g= 181 and e=156. Since
processing of disparity maps by a median fi
increases accuracy by enforcing some -scanline
continuity (Veksler, 2005) (Den& Lin, 2006), in
some experiments, we apply this filter in a
processing step.

3.1 Rectified Images

Our algorithm was first evaluated using
Middlebury  Stereo Evaluation  framewc
(Scharstein & Szeliski, 2003yhich is widely uset
as a benchmark tool by the computer vis
community when assessing performance
matching algorithms between rectifiemages.
Initially, we validate our DP implementation |
disabling the ability of changing lines in the sogr
matrix. Therefore, it takes advantage of the fhat
images are known to be rectified. Table 1 sh
that, once a median filter is applied orthe raw
disparity maps, this basic version of the propc
algorithm (Rectified), that was introduced in
previous paper (Dieny, 20), performs similarly tc
Bobbick et al. (Bobick & Intille 1999), which is th:
reference among standard DP apches.
Performances of the proposed algorit
(Unrectified) are also provided in Table 1. Althdu
the ability to change lines degrades significa

stereo matching accuracy, the quality of prodt
disparity maps remains reasonable (Figure 7). ér
next section, we show that this performar
reduction in the case of rectified images is rewd
by the ability to process more complex sets of ier
pairs.

Figurew disparity mapsgélbtain for Middlebury
dataset (Unrectified).

Table 1:Performance comparison using the Middlek
Stereo Evaluation framework.

o5 | Tsukuba | Venus | Teddy | Cones | Average
(non occ) (non occ) (non occ) (non occ) (bad pixels)
Bobbick 412 10.1 14.0 105 14.2
et al. 99
Rect. 6.74 10.7 14.1 11.0 16.7
Rect’ 4.63 7.40 10.7 7.75 134
un- 11.0 18.6 28.2 239 285
rect.
Un- 9.47 16.7 26.3 21.6 26.5
rect’

*: applying a Median Filter
3.2 Unrectified Images

The proposed algorithm has a unique capacit
process unrectified and distorted images. Thigss
demonstrated by applying rotations to the ri
images of the Middleburgataset Scharstein 2002-
2003) to simulate unrectified imageo that (see
Figure 8) quantitative results can be producec
evaluation.

Since by design, the algorithm can only cha
line by going either on the next pixel above ole
the current pixel, motions across an image
limited to angles comprised the interval [-45°,45°]
from the x axis. Consequently, an image rotatior
an angle outside that range cannot be directlyesb



However, this situation can be handled by using
strategy described at the end of the sec
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Figure 8: RawAverage pixel error for non occluded pix
as a function of image rotation.

In Figure 8 average pixel error is depict
according to the angle the right image rotated.
Data are provided for the ‘Cone’ image with a
resolution within the [-45°,45%ange, whereas tt
other images are rotated with a 15° resolutioniwi
the [0°,45°] rangeSince the metrics employed in t
automatic evaluation framework are not publ
available, error values reported in Figure 6 cart
directly compared to thosshown ir Table 1. Here,
we define average pixel error as the avel
difference between theestimated and actu
disparity maps. Note that occluded pixels in ei
map are not considered.

Consistent results are obtained for all the ime
showing good performance footations within the
[-20°, 20°] range. Outside this range, pixel er
increase significantlyThis behaviour reveals sor
weakness in the current penalty scheme used w
changeof line occurs, Eg. (2). When rotations by
angle lowerthan 22.5° are applied, ' scoring
matrix contains a majority of scanline moves .
consecutive line jumps are rare. However, in
case of larger rotations, score inaccura
introduced by frequent line change aff
significantly the calculations ohé scoring matri:
which leads to global errors in pix
correspondences.

Although, by design, it is not possible to so
alignments between images that have been ro
by more than 45° the framework can be ez
extended to tackle these situationshe strategy
relies on repeating the pixel correspondence ps
after introducing artificial rotations. The origir
right image is rotated 8 times by an angle of 45
that one of these 8 images will fall within th-
45°,45°] interval when considerinthe combined
rotation, i.e. original plus artificial. Each ofeh8
sets of correspondences is associated witt
average matching score calculated from ma>

found in the scoring matrices. These alignn
scores are them used to identify the meanir
disparity map.

Figure 9illustrates this with an example, whe
the ‘cones’ right image was rotated by 60°. Anal
of the curve shows that the best alignment sco
obtained when an artificial rotation c-45° is
applied: this correspond® an actual ombined
rotation of 15°, which can be successfully prooa:
by the proposed algorithm. This approach could
be used to address the drop of performance cz
by images which were subjected to an orig
rotation above 22.5°. In this application, ficial
rotations of 22.5° or lower would be requi.

10000
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Figure 9: Alignment scores obtained after adding
artificial rotation (x axis).

3.3 Distorted Images

Given the general nature of our algorithm, its &<
is not limited to finding pixel correspondenc
between unrectified images, but it can be applie
images affected by ndimear distortions

Figure 10 Correspondences in a distorteda: a) actual,
b) estimated c) disparity map



In order to illustrate this, threexperiments wer
conducted. First, water drops on a camera lens
simulated by applying lenticular distortions to
test image (Figure 133,bThen correspondenc
between the original and the distorted images \
calculated. Figures 13and 10a,b) show that o
algorithm detects the distortions and find g
correspondences by seeking optimal alignn
within the image. The associated diity maps
Figures 13 and 10c) reveal our method identif
not only distortion areas, but also their lentict
nature, since disparity values tend to be highéner
centres and radially decrease.

In the second experimerd, scene was captur
using different camera lensésee Figure .. The
second lens introducasnotable spherical aberrati

(see Figure 1b) but also small change of scale.

Figure 11 shows the result of matchirthree
scanlines of the first imagd-igure la)against the
whole second imageFigure 1b).The central line
and two parallel lines at 60 pixels from tcentre
were chosen to show the leaberration ad the
performance of our metdounder those conditio.

The proposed methodology alls us to find a
reasonableorrespondence in spite of the distort

whole image in case of distortio@reen lins represents
the groundtruth while purple curvese calculated by our
algorithm.

Finally, in the thirdexperiment, we processed 1
picture of a standing lady and itstouched versio
(Figures 12@), which shows a streamlined bo
This digital intervention is clearly identified «
Figure 12cand d) where the left and right parts
the diffeent limbs generally appear to have b
moved in opposite directions. In addition, d

Figure_lllzGIobaI alignmentetwee3 scanlines and a

patches on Figure 12#ighlights areas where
cloning tool was applied to reconstruct miss
background.

Figure 12:Character a) befbre‘ahrd &b) after retouct
Disparity maps c¢) Standard and d) using a cobalette
(enclosed) to highlight disparity directio

4 CONCLUSIONS

In this paper, we introduce a novel algorithm
dense pixel matching between unrectified ime
without any preprocessing stage. Based on
dynamic programming approach, our mai
contribution is the design of a 3D scoring ma
which allows finding the est correspondence
between a line and a whole image. As demonst
in experiments, good alignments are obtained L
images rotated by up to 20° and -linearly
distorted. In addition, its structure, which rel@s a
single DP process, makes it sule for hardware
implementation.

As future work, we propose to improve |
current scoring scheme and exploit i-scanline
information to improve the algorithm performan
Thus, for instance, the usage of uniquel
regarding the scanline matching wc allow
accelerating the processing by excluding part ef
3D cube.
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