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Abstract

Photo realistic algorithms as used in Computer Graphics are resource-hungry. The most
promising way of resourcing these algorithms is by using parallel distributed machines.

Ray tracing is widely used both directly to address specular reflection realistically and
indirectly in form-factor calculation in radiosity, so is present in the most powerful but most
computationally expensive global illumination algorithms used today. Both ray tracing and radiosity
thus benefit from improvements in the efficiency of the ray casting component which can result from a
good mapping onto distributed resources.

Two distinct algorithms have been advocated for this purpose: object dataflow and ray
dataflow, but there is no comparative literature. Here we offer a method for comparison from which we
derive the means by which they can be combined to give a more effective, dynamically determined
balancing of load over all resources than would be possible with either method alone. The paper
concludes with a discussion of results obtained for this new algorithm on a set of standard scenes.
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1. Introduction

Rendering algorithms used in computer graphics are expensive in time and memory resources.
The most promising way for resolving both of these limitations is the use of parallel distributed
machines.

The ray tracing algorithm is the first photo realistic algorithm to simulate specular reflection
and refraction through transparent objects [Wh80], which stimulated a lot of research on parallelization
of this algorithm. Now new rendering algorithms are appearing, which use the parallelization
techniques developed for ray tracing.

We start this paper by studying the two most popular parallel algorithms used for rendering.
Next, we describe a computation time model which allows us to compare these algorithms, and to
propose an original approach to parallelizing rendering applications with a concurrent algorithm,
which uses both object and ray dataflow. Finally, we present experimental results obtained by the
implementation of our new technique for the ray tracing algorithm.



2. Some efficient parallel algorithms for rendering

Our paper deals with the parallelization of rendering algorithms on parallel computers with
distributed memory (Figure 1). Because we want to render photo realistic quality pictures, we are
concentrating on parallel methods which allow for more processing memory and CPU power.
Accordingly we will not be interested in parallelization methods based on the duplication of the whole
scene on the local memory of every processor of the parallel machine.
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Figure 1: Architecture of a parallel computer with distributed memory.

Because ray tracing was the first photo realistic method but very time consuming, a lot of
parallelization techniques have been proposed for this algorithm. Some of these techniques are now
used for the parallelization of other photo realistic models, most notable radiosity [Go84, Ni85 and
Wa87].

We will now present the two main efficient parallel algorithms which can be used for ray
tracing and other rendering methods.

2.1. Algorithms with object dataflow

Objects describing the scene to be rendered are distributed among the local memories of the
parallel machine. Then each processor has to compute a subset of all independent computations. For
the ray tracing algorithm, the subset is of the pixels in the image.

Because the size of the database is supposed to be bigger than the size of a single local
memory, computations cannot be perform without communication. So when a computation cannot be
performed because of a missing object, this object is fetched on the other local memory of the parallel
computer. Then the processor keeps a copy of this object in its local memory, and the computation can
continue. In this way each processor can compute the rays which it has in charge.

This method is used in ray tracing [Gr88, Gr90 and Ba90], and also in the progressive radiosity
algorithm [B093].

2.2. Algorithms with ray dataflow

The principles of this algorithm are quite different from these of the previous one. Here each
processor is in charge of a subspace of the 3D space and so owns objects which belong to its subspace
in its local memory. Then each processor performs only computations which are in relation with the
objects of its 3D space.



When a computation can only be performed by using an object belonging to another subspace,
this computation is sent to the processor owning the data. Then this processor will continue the
computation until this computation needs an object from another subspace. By travelling from
processor to processor computations can be fully performed.

Many different algorithms based on this approach have been proposed for ray tracing [Ko88,
Sa88, Is91, Le93 and Ba94], but also for progressive radiosity [Gu95].

2.3. Conclusion

We have seen that the two efficient classical algorithms for ray tracing are also used for the
parallelization of the progressive radiosity algorithm. Now we would like to know which one of these
parallel algorithms is the most efficient. Unfortunately, the literature does not give a proper answer to
this problem.

3. Model and analysis of the two dataflow schemes

We do not know which of these classical algorithms is the most efficient and we do not want to
choose arbitrarily between them. So we will propose our own comparison. The implementation of
these two algorithms being a heavy task, we thought that it would be easier and efficient enough to
perform a complexity analysis of the two schemes. This analysis leads us to a model of the
computation time of the dataflow algorithms. We use the ray tracing example in order to limit our field
of investigation.

3.1. Algorithms and assumptions

Our models are for a qualitative comparison purpose only. We just want to determine which of
the two parallel dataflow algorithms is the most efficient.

In order to be able to propose models for these two algorithms, we simplify the ray tracing
algorithm:

At first the ray tracing algorithm may be seen as a loop, where, at each step, a ray-object
intersection is performed for all rays which have been generated. A ray-object intersection involves
obviously the intersection computation, but also message passing may be performed before this
computation, if the ray or the object is remote.

During the preprocessing step each object is associated to a single processor, which allows each
processor to know where to get a missing object.

Being interested in a comparison between the two algorithms, the generation of shadow rays
and refracted rays would only complicate the algorithms without adding any relevant information, so
we will not deal with them.

Finally no dynamic load balancing schemes are supposed to be implemented on the algorithms
we study.

We describe now the two algorithms to which we are going to give a computation time model:

1. Objects are distributed, each of the nb processors receiving a fixed percentage, x, of the
scene objects.

2. The ny primary rays are distributed, each processor receiving ny/nb rays.

At each step, (1-x) of the rays need objects which are not owned by their processor.

4. Then an object or a ray dataflow strategy is used:

[98)



a. Object dataflow algorithm:

- Each time a ray needs an object, a request is sent to the processor which owns the
missing object.

- This processor sends back a copy of the missing object and the ray computation is
performed.

b. Ray dataflow algorithm:

- Rays needing an object are sent to the processor which owns the object (rays are
buffered, each processor sends only one message to each of the other processors).

- When all rays are on the processor possessing the needed object, ray computations are
performed.

5. When ray processing is done, the ray is deleted and a new ray is generated. From a given
step, rays start to disappear because it is supposed that they have finished their journey
through the scene. As such, some deleted rays are not replaced.

6. After all processors have finished computing their rays, return to step ‘3’.

7. Terminate when all rays have disappeared.

Before presenting our computation models, we present some assumptions for the parallel ray
tracing algorithms we want to model:

- Object distribution is supposed to be well balanced.

- The number of rays to be computed is larger than the number of objects.

- All objects have the same probability for intersecting at every step of calculation.

- We assume that the size of an object is bigger than the size of a ray and that each object
has the same size.

- We assign a fixed computation time to every distinct operation.

3.2. Computation time models

In order to compare the two classical dataflow algorithms, we propose two computation time
models for the previous algorithms. These models are based on recurrence relations, which gives
computation time for the object and ray dataflow algorithms, depending on the percentage of objects
owned by each processor and on the number of processors.

We use the following notations:

ny is the total number of rays to compute at the beginning of the algorithm.

nb is the number of processors used, nb>1.

x 1s the fraction of the database owned by each processor, x € 0,1].

ri;k 1s the number of rays which cannot be computed on processor i at stage k£ without communication
with the processor j.

n;x 1s the number of rays owned by the processor i at stage &, n, 4 eN’.



In the following, equations are given for the permanent regime, that is the regime in which the
total number of rays is constant on the simulated parallel machine. Each processor owns the fraction x
of the database, so only x of the rays being on a processor i can be computed without any
communication:

0@, k) O(NN*),0<i<nb,r,,, =x*n,,,

Then, (1-x) of the rays owned at step k-/ cannot be computed on processor i without any
communication. There are nb processors, so:
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The previous equations do not involve any load unbalance between processors. In order to have
more realistic models, we add a variable ;;; which models unbalancing at every step k for each
processor i in relation with a processor j (Cijx€ [-1,1]). The previous equations now become:
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Now we express the number of rays » that a processor i has to compute at a given step k.
For the object dataflow algorithm, this number is constant in the permanent regime:

UidON,0<i<nb,n,, =l
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But for the ray dataflow algorithm, this number is the number of rays needing the processor i in
order to be computed at step £.
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The equation (1) is true if ;4 does not induce any change in the total number of rays. So,
OiON,0<i <nb,Zn,’k =n,
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By replacing »; ; in the equation (3) by the expression (2), we get:
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Finally in replacing r;;4 in equation (4) by its expression in equation (1) we have a relation
between the {4
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1

=X
z EC* it " +E’>/>k) * z * R *(1+ /,j,k)E: n,
J iz] nb_l

)

Now we express the computation time of each algorithm. Message passing with asynchronous
communication is the protocol of communication we want to simulate. So the data transmission costs
are not relevant for our study, nevertheless we cannot ignore the startup times and the packing and
unpacking times (copy of data to or from a communication buffer).

Here is the notation for the computation time of each single operation:

Tray is the computation time of a ray.

Tsending and Treceipe are the startup times for sending and receiving a message.
Tpack _object and Tunpack_object are packing and unpacking times for an object.
Tpack ray and Tunpack ray are packing and unpacking times for a ray.

Tpack req and Tunpack req are packing and unpacking times for an object request.

The computation time for a processor i to perform the step j using the ray dataflow algorithm is
noted by 7C;;. Its expression is:

— k k — k k — k
TCi,_j - ni,] Tmy + T\'cnding (nb 1) + Tpackimy Z ri,k,_j + Treccipt (nb 1) + Tunpac’kimy Z rk,i,_j
Zi Zi

We can deduce that the needed time for performing one full step j is the time of the slowest
processor at step j:

TC, = Max,(TC, )
So the computation time for performing all steps with the ray dataflow algorithm is:

TC = ZTC», = ZMax,(TC,J)
J J

Now we do the same thing for the vobject dataflow algorithm. The computation time for a
processor i to perform the step j using the object dataflow algorithm is noted by 70;;. Its expression is:
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*
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So the computation time for performing all steps with the object dataflow algorithm is:

70 =y Max,(T0, )



3.3. Results

We tested our models for various numbers nb of processors and for various fractions of the
database owned by each processor x. We made several experiments by changing the ratios between
computation times of each single operation. With realistic ratios, we always obtained charts with the
following shapes:
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Figure 2: Comparison between the two classical dataflow algorithms using models.

Shaded areas on Figure 2 indicate whether the ray dataflow or object dataflow algorithm was
more efficient. First, we see that the object dataflow scheme is best when each processing element (PE)
deals with a large part of the scene. The result is reversed when processors have only a small part of
the scene. Furthermore, we notice that increasing the number of processors seems to favour the object
dataflow algorithm.

Although our model is based on a lot of simplifications (no consistency, no load balancing,
step-by-step...), the results raise some questions:

1. Should we choose between the two algorithms depending on the number of processors and

the scene distribution?

2. Should we choose dynamically, instead of doing it at the preprocessing time?

Our goal is to propose a parallel algorithm which could be used for a large range of
applications, so only a dynamical choice seems to be suitable. We will explore this idea in the
following.



4. A concurrent dataflow algorithm

Using results obtained previously, we give the main principles of the concurrent dataflow
algorithm we propose. Finally we show some experimental results obtained with this new algorithm
implemented for the ray tracing algorithm.

4.1. Principles

Previously we have seen that both dataflow algorithms may be useful to increase efficiency
depending on the number of processors and the size of the local memory available. That is why our
new algorithm will give the ability to every processor to choose the most efficient type of dataflow
dynamically. This arose from the development of a parallel algorithm that included the two modes of
dataflow, i.e. a concurrent dataflow algorithm.

With this algorithm, every processor can exchange both objects and computations at any
moment. So the key is the way to choose between these two kinds of dataflow for optimal efficiency.
This choice has to be guided by two main goals:

1. Keeping optimal load balancing between nodes of the parallel machine.
2. Reducing the amount of communication.

In order to achieve these goals, every processor needs several parameters for obtaining optimal
choice. Some are local, but others are not. Every processor needs to know:

1. The load of every processor.
2. The number of computations which cannot be computed in the absence of communication.
3. The list of all the remote objects needed for the computations which cannot be performed.

Most of these parameters can be computed locally, but the load on other processors cannot.
This new algorithm needs a scheme which allows every processor to know the load of the others.
Furthermore, considering that we wish to work also on massively parallel machines, we want to avoid
“master-slave schemes” because it leads to communication bottlenecks. Global information should be
transmitted by a non-centralized strategy, which assures scalability and does not produce extra
messages. Thus each time a message is sent because objects are missing, it includes a header, which
contains the load of the sender i.e. the number of computations still to be computed. After a few
messages, each processor has the knowledge of the load of every other processor in the parallel system.

With this scheme, every processor gets sufficiently precise information for a very low cost
(only the size of messages is increased). Using this information and its own parameters a node has the
capability to choose between object and ray dataflow at any instant.



The following is an outline of the algorithm:

IF my load is superior to a minimal load
(I can send some computations to perform to another processor)
THEN
FOR every processors
IF my load is superior to the processor load
THEN
Send computations to the processor
ENDIF
ENDFOR
ENDIF
FOR every missing piece of data
(each piece of data is supposed to be own by a single processor)
IF the number of computations needing the piece of data is sufficient
THEN
Ask for the piece of data
ENDIF
ENDFOR

For example, if a processor is busy, it will choose to send computations to processors which
have a lower load. If a processor is idle, it will choose to ask for objects in order to perform
computation locally.

Finally, our algorithm offers a dynamic management of concurrent dataflow, which
intrinsically assures dynamic load balancing.

4.2. Experimental results

Now that the principles of our algorithm have been explained, we present our experimental
results (the entire results can be found in [Ne97]).

Our strategy has been implemented using the sequential ray tracer OORT [Wi94]. The results
presented here have been obtained using a CRAY T3E with 128 processors interconnected by a 3-D
torus topology. We used PVM as a message-passing library. The size of each picture is 512x512 pixels
and the maximal ray depth is 5. Scenes, i.e. Mountain5, Ringl, Tetrahedron5 and Tetrahedron6, come
from the SPD database [Ha87] and contain between 341 and 8688 objects.

4.2.1 Comparison between the two classical algorithms

Our new algorithm including the two modes of dataflow, so it is possible by setting some
parameters to use it in each of the classical modes. In this way, we can compare the two classical
algorithms experimentally and check if the results obtained are similar to those obtained by the
analytical method.

The comparison between these two algorithms is expressed in term of the time profit of the
object dataflow algorithm, defined here as the processing time needed by the ray dataflow algorithm
divided by the processing time needed by the object dataflow algorithm.

The next figure shows the time profit for the scene Tetrahedron5 using various numbers of
processors:
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Figure 3: Experimental comparison between the two classical dataflow algorithms.

We find again the results of our model (Figure 2):
1. The object dataflow scheme is the best when the scene is lightly partitioned (right
side of Figure 3).
2. The ray dataflow scheme may be the best only when the scene is extensively
partitioned (left side of Figure 3).
3. The object dataflow scheme is the best when the number of processors is high.

Our computation time model appears to be efficient enough to predict these experimental
results, so we can assume that the new algorithm to which it contributed to create should be efficient.

4.2.2 Results provided by our new algorithm

We compare the results given by our concurrent dataflow algorithm with those of a classical
object dataflow algorithm, which appears to be more efficient than the classical ray dataflow algorithm
for the studied configuration (a machine with 64 processors). The comparison between these two
algorithms is expressed in term of the time profit of the concurrent dataflow algorithm.

The next figure shows the time profit obtained by the concurrent dataflow algorithm for various
scenes using 64 processors of the CRAY T3E:
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Figure 4: Time profit depending of the scene partition for the concurrent dataflow algorithm.

At first it appears that whatever scene is rendered, the time profits provided by our new
algorithm are always quite high: the processing time of the Mountain5 scene has been divided by
almost 4! Moreover charts have very similar shapes, which suggests that the general behavior of the
algorithm is scene independent. The best results are obtained when each processor owns a low
percentage of the scene. When processors own less than the half of the object database, profits vary
between 3.9 and 1.5, otherwise they are between 1.7 and 1.

This fact can be easily explained by the way in which global information is transmitted to
processors. This information is distributed by messages generated for missing objects. When each
processor owns most of the scene objects, very few messages are sent, so refresh rates for this
information is quite low. Accordingly its precision may not be good enough to permit the best choice
in every case. One solution to resolve this lack of precision would be to generate extra messages
providing load information when the refresh rate is too low.

Our algorithm needs a sufficient flow of communications to reach its highest efficiency. When
there is too much communication - when less than 10 % of the scene is owned by each processor -,
some messages cause wait states. Then time profits provided by our algorithm decrease. (Nevertheless
they continue to be better than 1.8).

One goal of our concurrent algorithm was to reduce computation time by reducing the number
of messages which are sent. In the next figure, we show the message profits induced by our new
algorithm, defined here as the number of messages sent by the object dataflow algorithm divided by
the number of messages sent by the concurrent dataflow algorithm.
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Figure 5: Message profit depending of the scene partition for the concurrent dataflow algorithm.

The charts on figure 5 are very similar to these of the figure 4, which clearly indicates that our
concurrent algorithm improves computation times due to the reduction of message numbers. Message
profits are between 6.1 and 1.7 when processors have loaded less than half of the database. Again we
see that waiting for messages decreases profits.

Our algorithm using concurrent dataflow gives very encouraging results, as the computation
time for rendering pictures and the number of exchanged messages are reduced by significant factors
in relation to a classical dataflow algorithm. This reduction of the magnitude of the flow of data
communication reduces the risk of network saturation.

The previous results show that our algorithm is efficient on an architecture of 64 processors. In
order to express its scalability, on the next figure we present its acceleration as a function of the
number of processors. The charts are given for the picture Mountain5 for various percentage of scene
owned by each processor.
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Figure 6: Scalability of the concurrent dataflow algorithm for various memory sizes.

Whatever the percentage of scene owned by each processor, the acceleration between 32 and
128 processors is over 2.2. So this algorithm appears as being scalable on our architecture. That was
predictable because our algorithm provides a significant reduction of communication and a dynamic
load balancing scheme.

5. Conclusion and future work

In this paper, we have shown that the classical parallel algorithms used for ray tracing may be
used for other rendering algorithms. Then we presented a model for some parallel ray tracing
algorithms. The results lead us to propose a new parallel algorithm for rendering, based on concurrent
dataflow.

As performances on a CRAY T3E show, the implementation of this algorithm for the ray
tracing application gives encouraging results seeing that the computation time for a picture has been
reduce by 3.9 in relation to the performance of the best classical dataflow algorithm. Moreover
communication flows are substantially reduced and the algorithm is scalable.

Our concurrent scheme is currently used for the parallelization of an algorithm of particle
simulation.
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