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Abstract 

 

This dissertation contributes to the state of the art in protein interface prediction 

and detection of native-like docked poses by re-ranking them using protein interface 

knowledge. We started by investigating binding site patterns among homologues of a 

target protein in order to create a 3D motif. This structural binding site descriptor 

enables the re-ranking of docked complexes of the target protein. Although 3D motifs 

provide biological insight of protein interactions and have usage in real applications, 

they are not suitable for high through-put analysis. Therefore, we introduced a novel 

protein interface prediction framework which uses a weighted scoring schema to detect 

interface residues of the target protein using its homologues. The weights quantify both 

homology closeness between the target protein and its homologues and the diversity 

between the interacting partners of these homologues. The main novelty of this 

predictor is that it takes into account the nature of homologues interacting partners. It 

was further exploited for the development of a method for re-ranking docked 

conformations using predicted interface residues. We have evaluated both our interface 

predictor and re-ranking of docked poses using standard benchmarks. Comparisons to 

current state-of-the-art methods reveal that the proposed approaches outperform all their 

competitors. However, similarly to current interface predictors, our framework does not 

explicitly refer to pairwise residue interactions which leaves ambiguity when assessing 

quality of complex conformations. In addition, the performance of our interface 

predictor generally does not outperform the best available homologue interfaces if it 

was used as prediction. Therefore, we investigated the detection of the best homologue 

using the ‘binding site transitivity’ concept: given two query protein chains, interfaces 

of the first query protein are structurally compared against binding sites of the 

homologues’ partners of the second query chain. This method not only allows  detection 

of the best homologue for a reasonable number of proteins but also produces a docked 

structure of the two query chains. Finally, experiment suggests a meta interface 

predictor combining the prediction of our former interface predictor with the latter 

predictor based on binding site transitivity could further improve interface prediction. 
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1 Introduction 

Similarly to ‘words’, which need to be “assembled into sentences, paragraphs, 

chapters and books” (Sali et al. 2003) to tell a story, ‘protein structures’ need to be 

assembled into protein complexes to perform a specific task. To form complexes, 

proteins interact with other proteins, DNA, RNA and small molecules using their 

interface residues. All those types of interactions are under intense scrutiny by the 

research community, each of them defining a distinct field of research. In this study we 

are focused on protein-protein interactions (PPIs) and prediction of their interfaces. 

Modifications in PPIs affect the events that take place within cells which may lead to 

critical diseases such as cancer (Sali et al. 2003; Nebel 2012). Therefore, knowledge 

about PPIs and their resulting 3D complexes can provide key information for drug 

design. 

A number of experimental techniques have been used to decipher PPIs. Not only 

are these methods expensive and time-consuming, they also produce datasets which are 

incomplete and inconsistent (Ezkurdia et al. 2009). Therefore many computational 

methods have emerged and are used for predicting PPI sites, also named as interfaces. 

An interface is a set of residues on one protein which interacts with residues from other 

proteins to form a complex. Knowledge of interfaces is important to fully understand 

proteins molecular mechanism and to identify potential drug targets. However, in order 

to elucidate biological process involved in pathways and signal transduction cascades, 

atomic structures of the 3D complexes are required (Nebel 2012). Docking is a popular 

computational method which predicts the possible structure of the complex produced by 

two proteins using the known 3D structure of the individual proteins. However, docking 

of two proteins can result in a large number of different conformational models the 
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majority of which is far from correct. This highlights one of the main limitations of 

docking.  Therefore, scoring functions have been proposed which are used to re-score 

and re-rank docked conformations in order to detect near-native models. One way to 

distinguish native-like models from false docked poses is to use knowledge of protein 

interfaces. If one knows the possible location of interface residues on each individual 

protein, docked complexes which do not involve those interfaces can be rejected. 

Therefore, accurate prediction of protein interfaces can assist with detection of native-

like conformations. 

In this thesis, we will explore the realm of protein interface prediction and their 

application in distinguishing native-like complexes by re-ranking docked poses. We 

propose novel approaches to identify protein binding sites and demonstrate performance 

better than current state-of-the-art methods. 

In this introductory chapter, we first present the context of our research in 

sections 1.1 and 1.2. This is followed by a summary on our aim and objectives in 1.3 

and our scientific contribution in 1.4. Section 1.5 outlines the structure of the whole 

thesis. 

1.1 Protein Interface 

When two proteins interact residues from one protein create contact with 

residues of the interacting partner.  These residues are called interface residues and are 

located at the binding site of proteins. These sites display specific chemical and physical 

properties which is important for bimolecular recognition and interaction with other 

proteins (Aytuna et al. 2005). Several experimental techniques have been used to 

identify interface residues. Mutagenesis has been particularly powerful in their 

detection. In mutagenesis, mutation of interface residues will influence the interaction, 

while mutation of non-interfaces does not have any effect (Van Dijk, Boelens, et al. 

2005). Methods such as yeast two-hybrid, Plasmon resonance and phage displays can 

also be used to study if a residue mutation has affected the complex formation. To 

identify a residue for mutation, either it can be selected based on prior knowledge (such 

as a highly conserved residue) or it can be performed on all residues using alanine 

scanning (Van Dijk, Boelens, et al. 2005) . Alanine-scanning measures the contribution 

of each residue to formation of the protein-protein complex, by analysing the drop in the 
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binding free energy when the target residue is mutated to alanine. Those studies have 

also shown that not all interface residues contribute equally to binding free energy 

(Aytuna et al. 2005). 

A significant energy contribution to the stabilisation of a protein-protein 

complex has been seen by interface residues which are named Hot spot (Burgoyne & 

Jackson 2006). Mutation of hot spots to alanine have caused a significant drop in 

binding affinity (Bogan & Thorn 1998; Clackson & Wells 1995). These evolutionary 

conserved residues are located in the centre of interface patches (Hu et al. 2000; 

DeLano 2002), and are surrounded by a hydrophobic O-ring of energetically less 

important residues (Fernández-Recio 2011). Since experimental methods are costly, , 

computational methods have been proposed to detect both interface residues and hot 

spots (Ofran & Rost 2007b). These computational methods are introduced in chapter 2 

and for the sake of being exhaustive both interface and hotspot predictors are discussed. 

 In order for those predictors to be able to distinguish interfaces on a target 

protein, they need to rely on interface patterns extracted from experimentally 

determined complexes in the Protein Data Bank (PDB) (Berman et al. 2000), the single 

worldwide repository of large biological molecular 3D structures . There are three main 

ways of defining interface residues in a protein complex: 

1) The first approach measures the distance between atoms of one protein chain 

to atoms of its interacting partner. If the distance between is smaller than a 

defined threshold (usually between 5-8 Å (Cazals 2010)) then the residues 

containing those atoms are defined as belonging to the interface. Most 

methods use the definition of the Critical Assessment of PRedicted 

Interactions (CAPRI) (Janin et al. 2003) for this threshold: an interface 

residue is defined as an amino acid whose heavy atoms are within 5Å from 

those of a residue in a separate chain. In this thesis we have adopted this 

definition for identifying interface residues. 

2) Another method measures the difference in the solvent accessible surface 

area (ASA) when individual protein chains are separated from their complex 

form. ASA is the area around the atom defined as its van der Waals radius 

plus a water probe radius. If an atom ASA in complex is smaller than in 

monomer by a specific threshold, the residue containing that atom is defined 
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as belonging to the interface (Yan et al. 2004). Figure 1.1 illustrates this 

idea. Interface residues can be further divided to buried or exposed 

depending on how accessible they are after forming a complex. 

 

Figure 1.1:ExampleofinterfacedefinitionusingASA.Atomsofthe‘bottommolecule’whichhave

lost accessibility to solvent due to interaction with the ‘top molecule’ are referred as interface

residues (marked as A, B and C). B is totally buried while A and C are partial accessible. The water 

probe is marked as W. Taken from (Conte et al. 1999). 

3) Finally, Voronoi diagrams have been used to select interface residues 

(Poupon 2004). The Voronoi diagrams (VD) divide the space into several 

convex polytopes here named as cells. Each cell contains one atom; two 

atoms are called neighbours if they share a VD edge. If the VD of two atoms 

from two different protein chains share a common edge then residues of 

those atoms are defined as interfaces. See Figure 1.2 for an example. 
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Figure 1.2: 2D representation of Voronoi diagrams between two protein chains A and B. Atoms of 

A and B are shown in blue and green circles, respectively. The Voronoi cells are shown in dotted 

lines between two neighbouring atoms and the solid blue line shows the Voronoi geometrical 

interface between the two chains. A cell is known as interface if it has an edge with the Voronoi 

geometrical interface line. In this image the interface atoms are shown darker than other atoms. 

Taken from (Gong et al. 2005). 

Since the interface size and location defined by the methods above are identical 

or have a large overlap, experiments have shown that the method used to define the 

interface does not have an impact on predictors performance (Ezkurdia et al. 2009). 

Although the choice of method for defining interfaces is not important, the thresholds 

for defining distances and comparing ASA are critical for selecting specific features of 

interfaces (De Vries & Bonvin 2008).  

To define interfaces, some methods first detect surface residues and then select 

interfaces with one of the methods above. Surface residues, which are exposed residues, 

are selected when their relative solvent accessibility (RSA) is above a threshold. This 

threshold has varied among methods from 16% to 5% (Ezkurdia et al. 2009), where a 

higher threshold lowers the number of selected surface residues. Although higher 

threshold may lead to information loss, it has been shown to improve some classifier-

based approaches (Ezkurdia et al. 2009). 
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While interfaces defined as above may be composed of irregularly dispersed 

residues on a protein, some predictors have used protein patches which are continuous 

and generally form a circular area on a protein surface. The early work of Jones & 

Thornton (Jones & Thornton 1997a) has defined patches by first selecting surface 

residues with RSA>5%. Then, each surface accessible residue was used to define a 

surface patch. A patch consists of a central surface accessible residue with n nearest 

surface accessible neighbour, defined by the distance between their c-alpha atoms. 

While Jones & Thornton (Jones & Thornton 1997a) have used the number of residues 

(n) as a constraint, a recent method (Gamliel et al. 2011) has defined a sphere with 

radius r=7Å around the β-carbon atom of the surface accessible residue to select 

neighbouring residues (see Figure 1.3).  

 

Figure 1.3: Example of surface patch definition. (a) Surface accessible residues are coloured in 

blue. A surface patch is defined with a central exposed β-carbon atom (large sphere) and the 

exposed residues within a radius r=7Å (in green). (b) Residues defining the surface patch are shown 

in red. (c) All patches of the protein. Taken from (Gamliel et al. 2011). 

In practice, there are fewer interface predictors which use patch definition than 

those relying on the residue-based interface definition (see chapter 2). Regardless of the 

methods used, prediction of interface residues has been essential in assisting detection 

of native-like docked poses (discussed in chapter 2). 

1.2 Protein Docking 

3D complexes of proteins have provided valuable insight to structural 

mechanism of protein interactions and their individual role in a complex. Experimental 

techniques such as NMR, X-rays and yeast-2-hybrid are expensive and time consuming 

approaches to generate protein complexes. Therefore, in-silico approaches, or docking, 
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have been proposed to predict complexes from individual protein chains. Docking 

methods started with methods which search through the conformation space and 

generate a large number of docked poses for two protein chains (Figure 1.4 shows a 

schematic representation of docking). This search is guided by fast scoring functions 

based on energy potentials and shape complementarity. However, among the generated 

docked poses many contain models far from the native model and energy-based scoring 

functions fail to detect near-native configurations.  

 

Figure 1.4: Docking algorithm. Two input chains are shown in red and blue. Several docked poses 

are generated by the docking algorithm. 

Therefore, more elaborated scoring functions have been proposed to re-score 

and re-rank docked poses. Methods aiming at re-scoring docked poses can be broadly 

grouped into: (i) knowledge-based potentials scoring functions (ii) usage of learning 

strategies and (iii) usage of predicted interfaces. Among these methods, usage of 

predicted interface residues has shown great popularity (Xue et al. n.d.; Gottschalk et al. 

2004; Huang & Schroeder 2008; Khashan et al. 2012) since: 1-knowledge-based 
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potentials have shown low correlation to binding affinities (Kastritis & Bonvin 2010) 

and 2- usage of learning strategies has not significantly improved the knowledge-based 

potentials scoring functions (Zhao et al. 2011). 

With the increase in the available 3D complexes in PDB, template-based 

docking methods have emerged (Ghoorah et al. 2011; Tuncbag et al. 2011; Kundrotas & 

Alexov 2006; Zhang et al. 2013). They use available 3D complexes in PDB as 

templates to generate new complexes. Since the previous above mentioned docking 

approaches do not use any templates, they are called ‘template-free docking’. While 

template-based docking has enabled large scale PPI prediction, template-free docking 

still remains highly important. First, many proteins in the cell do not correspond to the 

energetically stable crystallised templates (Vakser 2013). Second, still some PPI lack 

templates or the quality of the template is really low (Movshovitz-Attias et al. 2010). 

Therefore, in this thesis we have focused on ‘template-free’ docking and we simply 

refer to it as ‘docking’. In this research we aim at detecting near-native docked poses by 

re-ranking them using knowledge of protein interfaces. 

1.3 Aim and Objectives 

The overall aim of this research is to improve the prediction of protein interfaces 

and to distinguishing near native docking models by means of re-ranking docked 

configurations. Our main objectives are summarised below: 

 

 Detection of native-like docked models using 3D motif:  

Although docking algorithms are capable of producing native-like 

models, identifying them in a pool of decoys is still challenging. 

Therefore methods have used experimental mutagenesis studies on a 

short list of low energy docked conformations to identify the native-like 

model. Since energy-based ranking has proven not to be reliable 

(Kastritis & Bonvin 2010), we have introduced structural 3D motifs of 

protein binding sites to provide more reliable ranking before employing 

mutation studies.  
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 Improving interface prediction by considering nature of interacting 

partners:  

Current state of the art methods predict interfaces for a specific protein, 

by generating a consensus interaction patterns among available 

complexes taken as templates from PDB (for details see chapter 2). One 

of the chains in these template complexes is either homologue or 

structurally similar to the protein of interest. Despite their huge 

contributions to prediction of protein interfaces, these state-of-the-art 

methods do not consider the diversity of interacting partners of the 

templates. It is important since some proteins display different binding 

sites depending on their interacting partners, whereas others interact 

through a single binding site. If, among templates, the same binding site 

interacts with a diverse set of ligands, it has to be rewarded since it 

displays a general pattern. One of the main objectives of this thesis is to 

distinguish protein interfaces considering the interacting partners of the 

homologues/structurally similar complexes. 

 

 Improving interface prediction by detection of the best homologue: 

While current methods generalise the interaction pattern looking at all 

possible complexes, detection of the best representative complex can 

improve the interface prediction. Therefore, we have investigated this 

idea using the binding site transitivity concept. Given a query protein 

pair the binding sites of the homologues of the first query protein (QP) 

are structurally compared against the interfaces of the homologues of the 

partners of the second QP.  

 

 Re-ranking of docked models using predicted protein interfaces: 

We have investigated the use of our interfaces prediction frameworks in 

order to rescore docked models. The use of interface knowledge in re-

ranking docked conformations depends on the quality of the interface 

predictor. Therefore, a more accurate interface predictor should be able 

to improve re-ranking of docked conformations. 
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 Development of a publicly accessible tool providing interface prediction 

and re-ranking of docked models: 

This tool will allow the research community not only to perform 

prediction and ranking, but also to compare their methods with ours. This 

tool is written in C# for Windows operating system. 

1.4 Scientific Contribution 

This thesis tackles the essential problems of protein interface prediction and 

detection of native-like models among docking solutions. The scientific contributions 

which are based on our novel ideas are summarised as below: 

 In chapter 2, we first provide an extensive review of protein interface 

predictors and discuss the motivations behind these methods. We explore 

the strengths and weaknesses of the different prediction methods. Then, 

we provide an overview on docking methods and describe approaches for 

re-ranking docking conformations. In particular, we look at the usage of 

predicted interfaces into detection of native-like docked conformations. 

This chapter provides a comprehensive discussion of the fields of protein 

interface prediction and docking approaches. 

 

 In chapter 3, we have introduced 3D motifs of structural binding sites for 

ranking docked conformations and selection of near-native model. A 3D 

motif is a structural descriptor of a protein binding site, which describes 

the 3D pattern a specific protein uses to bind to its partner. Creation of a 

3D motif is achieved by, first, extracting all homologues complexes of 

the protein of interest from PDB and, secondly, detecting interacting 

residues to create the motif.  In order to detect native-like docked poses, 

experimental mutation studies have been applied on a short list of low 

energy docked poses (Sivasubramanian et al. 2006; Van Dijk, Boelens, et 

al. 2005).  However, since energy ranking is not sufficiently reliable to 

produce a short list containing a native-like pose, 3D motifs have been 

used to improve docked poses ranking. As a proof of concept, the 3D 
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motif was used to investigate the mode of interaction between an 

antimicrobial peptide and a lipoprotein receptor. 

 

 Although prediction of protein interfaces is a very active field of 

research, the current state-of-the-art methods do not fully consider the 

diversity of the interacting partners in their predictions. Therefore, in 

chapter 4 we have proposed, T-PIP, a protein interface predictor which 

uses a scoring strategy to detect interface residues by looking at 

homologous proteins of the QP. The two main elements involved in 

scoring are: Homology between the QP and its homologues and the 

diversity between the interacting partners of these homologues. 

Comparison of T-PIP to the state of the art methods has shown better 

interface prediction performance. 

 

 Since predicted interface residues have assisted the detection of near-

native models, in chapter 4, we have proposed PioDock which uses T-

PIP predicted interfaces to re-rank all the docked conformations of two 

protein chains. Performance of PioDock on standard benchmarks has 

shown to be superior to the state of the art. Chapter 4 concludes by 

showing that that detection of the best homologue and mapping its 

interface residues on the QP could potentially improve interface 

prediction.  

 

 Finally, in chapter 5 we investigated the detection of best homologue 

using the binding site transitivity concept. This is achieved by structural 

interface comparison of the first QP homologues and the binding site of 

the homologues’ partner of the second QP. For a reasonable number of 

proteins this approach could detect a good quality homologue and 

therefore improve interface prediction. It is demonstrated that the 

combination of this strategy with the interface predictor introduced in 

chapter 4 could significantly improve performance obtained by those 

individual predictors. 
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1.5 Thesis Outline 

This thesis is divided into six chapters: 

This chapter has provided an overview of our research and highlighted our 

scientific contribution.  

Chapter 2 presents an extensive literature review of protein interface predictors 

followed by a review on docking methods.  

Chapter 3 has proposed binding site structural 3D motifs for detection of native-

liked docked conformations. This chapter is based on a journal paper published in 

Protein Peptides and Letters (Esmaielbeiki et al. 2012). 

Chapter 4 has proposed a novel framework, T-PioDock, for prediction of a 

protein complex 3D structure from the structures of its components. T-PioDock first 

predicts protein interface and then identifies near-native conformations from 3D models 

that docking software produced by scoring those models using the predicted interfaces. 

Part of this chapter is based on a work published in Open Access Series in Informatics 

(OASICS), German Conference on Bioinformatics 2012 (Esmaielbeiki & Nebel 2012). 

This was further extended and has been accepted ‘due to changes’ by the BMC 

Bioinformatics journal. T-PioDock is freely available for public use from 

http://manorey.net/bioinformatics/wepip/. T-PioDock has also taken part in the latest 

CAPRI competition, round 28.   

Chapter 5 has introduced a framework for protein interface prediction based on 

detection of the best homologues. A manuscript based on this chapter is in preparation 

for submission to a bioinformatics journal. 

Finally, chapter 6 concludes the undertaken research in this thesis and suggests 

further research possibilities.  

http://manorey.net/bioinformatics/wepip/
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2 Literature Review 

2.1 Introduction 

This chapter first investigates protein interface predictors and discusses their 

strengths and limitations (section 2.3). These methods are broadly divided into two 

groups: (i) intrinsic-based predictors, which use the query protein (QP) sequence or 

structural features to perform predictions (discussed in section 2.3.1) and (ii) template-

based predictors which take advantage of structurally similar proteins to the QP (see 

section 2.3.2).  Then, in section 2.4 docking methods for prediction of protein 

complexes are investigated. They are also divided into two groups, i.e. template-free 

(section 2.4.1) and template-based approaches (section 2.4.2). In particular, we discuss 

the use of predicted interface residues in re-ranking template-free docking 

conformations (section 2.4.1.4.3). Finally, evaluation metrics used for comparing 

protein interface predictors and docking methods are presented in section 2.5. 

2.2 Overview 

Proteins function by interacting with other biological units and therefore, 

analysis of protein-protein interactions (PPIs) is essential for comprehending cellular 

processes. Since any alternation in PPI can result in critical diseases, identification of 

PPI and their 3D complex provides key information for drug design. Experimental 

techniques such as Y2H (Brückner et al. 2009), phage display (Pande et al. 2010) and 

affinity purification (Kim et al. 2010) have played an important role in deciphering 

protein interaction networks. Despite these efforts only 10% of the human interactome 
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has been experimentally determined (Venkatesan et al. 2008). Moreover, experimental 

methods produce a large number of false positive (Kuzu et al. 2012; Reš et al. 2005). 

Consequently, computational methods are required for predicting and verifying protein 

interactions. 

While knowledge of the protein interactions is important to fully elucidate 

biological processes, 3D structure of protein complexes are essential to understand their 

atomic interaction pattern. Experimental techniques such as X-ray crystallography and 

nuclear magnetic resonance are available to produce atomic structure of protein 

interactions. However, their high costs in term of time and resources have limited their 

practical use. Since a large number - above 90,000 in August 2013 – of protein-protein 

complexes are available in the Protein Data Bank (PDB) (Berman et al. 2000) and PQS 

(Henrick & Thornton 1998), they can be used for modelling other PPIs (Zhang et al. 

2012).  

One of the main computational methods for predicting complex 3D structures is 

docking. Docking algorithms can be divided into two groups (Kundrotas et al. 2012), 

i.e.  template-based and template-free docking. With the increase in the number of 3D 

structures template-based docking has become particularly popular using experimentally 

determined structures as templates to generate new complexes. Template-based docking 

is particularly attractive since, unlike template-free docking, its low computational cost 

makes it suitable for interactome scale predictions. Since not all proteins can be 

modelled using templates, template-free docking still remains highly important (section 

2.4.3).  

Template-free docking investigates the whole configuration space along with 

energy-based cost functions to produce a large set of possible conformations. Although 

they have been shown to produce native-like poses but identifying them in a large pool 

of poses is still a challenging task. Therefore, to distinguish these models, docking 

algorithms include scoring functions which integrate constraints to filter and rank 

docking models. Scoring functions for re-ranking docking conformations are broadly 

divided in three groups of knowledge-based potential, machine learning functions and 

knowledge of predicted interfaces. The first group has shown low correlation to binding 

affinities (Kastritis & Bonvin 2010) and machine learning methods have not 

significantly improved upon knowledge-based potential (Zhao et al. 2011). Therefore, 
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The use of protein interfaces as a constraint to filter docking poses have been the focus 

of studies in the past (Gottschalk et al. 2004; Huang & Schroeder 2008) and recently 

(De Vries & Bonvin 2011; Li & Kihara 2012).  

 In this chapter, first progresses of interface predictor methods are discussed 

(section 2.3). Second, we review the use of constraints such as predicted interfaces in 

ranking docking conformations (section 2.4). 

2.3 Protein Interface Prediction 

Many computational methods have been proposed for identifying interface 

residues of proteins. Interface predictors are broadly divided into two non-exclusive 

categories based on their use of protein information. The first approaches are based on 

the specific features of the protein’s sequences and/or structures (intrinsic-based 

approach). The second ones explore proteins which are either sequentially or 

structurally related to the QP to study their pattern of interactions (template-based 

approach).  

In sections 2.3.1 and 2.3.2 we discuss intrinsic-based and template-based 

approaches, respectively. 

2.3.1 Intrinsic-based Predictors 

These predictors use the sequence and/or structure of the query protein to detect 

potential binding residues. Sequence features are properties of residues in the protein’s 

amino acid sequence, such as composition and propensity of interface residues (Ofran & 

Rost 2003b), physico-chemical properties (Ofran & Rost 2007a; Chen & Li 2010), 

sequence evolutionary conservation (Xue et al. 2011; Pazos et al. 1997) or predicted 

structural characteristics (Ofran & Rost 2007a), whereas structural features are those 

associated to the atomic coordinate of proteins, such as secondary structure (Jones & 

Thornton 1997a; Talavera et al. 2011), solvent-accessible surface area (Šikić et al. 2009; 

Chung et al. 2005), geometrical shape of the protein surface (Šikić et al. 2009) and 

crystallographic B-factor (Jones & Thornton 1997a).  Some methods use solely proteins 

sequence and their sequential features (section 2.3.1.1), while others require the 3D 

structure of the input protein in order to generate structural features (section 2.3.1.2) 

which may be combined with sequential features. 
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To benefit from a combination of sequence/structure features instead of  

focusing on only one, two broad approaches (De Vries & Bonvin 2008) have been 

introduced (a detailed review on these techniques can be found in (Zhou & Qin 2007)). 

The first approach, uses a physically relevant parametric function (De Vries & Bonvin 

2008) (such as: empirical scoring function (Liang et al. 2006) or PLS regression 

(Kufareva et al. 2007)) for combining features either linearly or nonlinearly. The second 

one, uses machine learning techniques such as support vector machine (SVM) (Koike & 

Takagi 2004; Bradford & Westhead 2005; Chung et al. 2005) , neural networks (NN) 

(Ofran & Rost 2003b; Fariselli et al. 2002; H Chen & Zhou 2005; Wang et al. 2006), 

Random Forest (RF) (Šikić et al. 2009; Li et al. 2007; Li et al. 2012) and Bayesian 

networks (Neuvirth et al. 2004; Bradford et al. 2006). 

The prediction output format of these methods can also be divided into two 

groups: patch-based or residue-based approaches. In the first one, continuous patches of 

residues are predicted as interface. In the second group, which is the most common, a 

list of residues which are not necessary continuous on the protein surface is predicted as 

interface. Although many patch-based interface predictors methods (Bradford & 

Westhead 2005; Bradford et al. 2006; Pettit et al. 2007) have been introduced, 

comparative study (De Vries & Bonvin 2008) between patch- and residue-based 

approaches shows a low sensitivity in patch-based predictions (around 20%). Therefore, 

more attention has been paid to residue-based prediction. 

Section 2.3.1.1 first discusses interface prediction methods which require only 

the QP sequence to perform intrinsic-based prediction and in section 2.3.1.2, we 

investigate those which are based on the QP’s 3D structure. For the sake of being 

exhaustive, we will also mention methods which aim at predicting hot-spots. 

2.3.1.1 Sequence-based Predictors 

A small number of methods predict interfaces using solely the query protein 

sequence information with no need to use its 3D structure. The main idea behind these 

methods is that their approach can be applied to a wider range of proteins; but the main 

difficulty is to achieve high specificity. Therefore, to improve prediction, they take 

advantage of properties such as evolutionary information or predicted structural 

features.  
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 In section 2.3.1.1.1, we first discuss methods which use the properties of the 

residues in the QP’s sequence to make predictions. Then, in section 2.3.1.1.2 we discuss 

those sequence-based methods which use evolutionary information derived from 

comparing a QP sequence to homologous sequences. Finally, in 2.3.1.1.3 we discuss 

methods which combine evolutionary information with residue intrinsic information to 

improve prediction performance. 

2.3.1.1.1 Intrinsic Features-based Predictors 

Methods in this category use the QP sequence and study its sequential features 

in order to detect potential interfaces. One of the early studies using only sequence 

information (Gallet et al. 2000) detects binding sites (called ''receptor-binding domains'' 

(RBDs)) by analysing hydrophobicity distribution of the protein sequence. To achieve 

this, a sliding window of N residues is moved along the stretch of the protein sequence. 

In each window, the mean hydrophobic moment and mean hydrophobicity is calculated 

to detect the RBD. The concerning points about this method are the following. First, the 

performance of this method depends highly on the dataset used for evaluation 

(Sensitivity ranging between 59 to 80%) (Fernández-Recio 2011).  Second, false 

positive and false negative are not discussed (Ofran & Rost 2003b). Third, studies have 

shown that hydrophobicity alone is not a sufficient characteristic to distinguish protein 

interfaces (Koike & Takagi 2004; Jones & Thornton 1997a).  

In contrast, Ofran and Rost’s (Ofran & Rost 2003b) work increased specificity 

by using amino-acid composition. They have previously shown that residues at the 

interface have a totally different composition than others (Ofran & Rost 2003a). 

Therefore, this information was used to train a NN, where a window of size 9 traversed 

across the protein sequences of a training set comprising 222 complexes. If the central 

residue of the window belonged to the interface, it was labelled as interaction site. This 

framework was only used on transient interaction between two non-identical chains and 

was tested on 111 complexes. Although they outperformed the RBD method in term of 

accuracy (62%), sensitivity was extremely low, down to 0.5% (Ofran & Rost 2003b).  

However, they observed that interface residues tend to form a cluster on the 

protein sequence which supports the claim that prediction can be done using sequence 

information alone. Based on this observation, Yan et al. (Yan et al. 2004) attempted to 
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improve specificity by introducing a two-stage classifier using SVM and Bayesian 

network. In the first stage, the SVM was trained using the same approach as Ofran and 

Rost (Ofran & Rost 2003b). This SVM accepts a vector of 9 residues as input and 

outputs a Boolean which indicates if the central residue and its neighbours belong to the 

interface. In the second stage, the Bayesian network classifier is trained to predict the 

central residue of the window as interface/non-interface based on the class label of its 

neighbours. They have proven that the use of the two-stage methods results in better 

predictions than the SVM alone (~27% in specificity). The main difference between this 

method and the previous sequence-only methods is that when defining interface on the 

training set, instead of classifying all residues as interface or non-interface, only surface 

residues are considered. On a dataset of 77 proteins, the two-stage classifier achieved 

58% specificity, 39% sensitivity and 30% MCC while RBDs displayed 31%, 37% and -

2%, specificity, sensitivity and MCC, respectively. 

The main limitation of these methods is that their specificity is low. It should be 

noted that although Yan et al. (Yan et al. 2004) has reached 58% specificity, but this 

number is biased due to the nature of their training set: unequal numbers of positive and 

negative samples affect specificity score (Baldi et al. 2000). For example, if a classifier 

is trained on a training set with 80% non-interface residues, then if the classifier predicts 

all residues as non-interface it will achieve 80% accuracy. To further improve sequence-

based predictors, Yan et al. and Ofran and Rost have suggested the integration of 

evolutionary information and predicted structural features into their frameworks. 

2.3.1.1.2 Sequence Evolutionary-based Predictors 

Methods have been developed which generate interfaces using only evolutionary 

conservation information (see (Lovell & Robertson 2010) for a review). These methods 

are based on the concept that interface residues are more conserved than the rest of the 

protein surface (Pazos et al. 1997). This was investigated in one of the early studies 

(Pazos et al. 1997) which detected potential PPIs by investigating correlated mutations 

in Multiple Sequence Alignments (MSAs): it is based on the intuitive assumption that 

residues which interact are under co-evolution pressure.  

Later on, they introduced TreeDet (del Sol Mesa et al. 2003) which uses 

evolutionary information and sequence conservation to detect functionally important 
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residues on proteins. This is achieved by dividing protein families into subfamilies. 

These conserved residues named, “specificity determining positions” can be used to 

detect protein-protein binding sites (Rausell et al. 2010). A recent study, Xue et al. (Xue 

et al. 2011) performed a study on more than 300,000 MSAs to analyse the extent that 

interface conservation in homologous proteins can be exploit to provide a correct 

prediction. Based on this, they developed HomPPI a sequence homology-based method 

where proteins homologous to a QP are divided into three zones: Safe, Twilight and 

Dark Zone. They range from homologues with highly conserved interfaces in the Safe 

zone to moderate and poor conservation in the Twilight and Dark zones. HomPPI 

attempts first to predict interfaces by retrieving homologues from the Safe zone using 

BLASTP. If such homologous proteins are not available, the Dark and Twilight zones 

are then explored. 

They present two variants of HomPPI: 1) NPS-HomPPI: which predicts the 

interfaces of a QP without the knowledge of its interacting partner and 2) PS-HomPPI: 

which predicts the interfaces of the QP knowing its interacting partner. In NPS-

HomPPI, the homologous are retrieved using BLASTP. If at least one homologue is 

found in the Safe Zone that will be used for prediction otherwise Twilight and Dark 

zones are investigated. If no homologue is found in any zones NPS-HomPPI fails to 

make a prediction. For each homologue generated by BLASTP, an Interface 

Conservation (IC) score is calculated. IC is based on a combination of BLASTP 

statistics generated from the alignment of the homologous protein with the QP. At most, 

the top k homologous proteins (k=10 in their study) with the highest IC score are kept 

and a MSA containing the QP is created. Interface and non-interface residues of the 

homologous are marked on the MSA. Then, for each position of the QP on the MSA, a 

prediction score is calculated. This is achieved simply by dividing the number of 

interface residues by non-interface residues suggested by the homologous proteins in 

that position. On the QP, positions with prediction score ≥ 0.5 are predicted as interface 

(an example can be seen in Figure 2.1). In PS-HomPPI, given A as the QP and B as its 

interacting partner, homo-interologues of A-B are retrieved using BLASTP. This means 

only complexes which involve homologues of both A and B are used for predicting the 

interfaces. PS-HomPPI only investigates homologous in the Safe and Twilight Zones 

and the scoring and prediction strategy is similar to NPS-HomPPI. Comparison on a 
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transient dataset shows PS-HomPPI outperforms NPS-HomPPI, which indicates that 

knowledge of the QP’s interacting partner improves the interface prediction. 

 

 

Figure 2.1: An example of NPS-HomPPI . Homologues of the QP, 1byf chain A, are generated using 

BLAST. Only 3 homologues have been detected in the Safe and Twilight Zone. Observed interfaces 

of homologues are mapped on their sequences. Red 1 and black 0 represents interface and non-

interface residues. If majority of residues are marked as interface, that position will be predicted as 

interface for QP. Taken from (Xue et al. 2011). 

2.3.1.1.3 Predictors Combining Evolutionary and Intrinsic Information  

Methods in this category use evolutionary information combined with residues 

intrinsic information.  Res et al. (Reš et al. 2005) improved the intrinsic-based work of 

Ofran and Rost (Ofran & Rost 2003b) by combing it with evolutionary information and 

using SVM instead of NN. They were the first people to use evolutionary information 

along with intrinsic features to perform interface prediction. Their work was inspired by 

the success of using evolutionary phylogenetic information for predicting functional 

sites (Lichtarge et al. 1996; Madabushi et al. 2004). They tested their method on 77 

interacting protein chains with sequence identity <30% (Yan et al. 2004) and achieved 

64% accuracy which is 6% higher than Ofran and Rost’s (Ofran & Rost 2003b) on the 
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same dataset. Another method focused on hetero-complexes by Wang et al. (Wang et al. 

2006) trained an SVM using a combination of amino acid evolution conservation and 

sequence profile. They were calculated using homologous MSA and phylogenetic tree, 

respectively. Interesting results shows that the prediction performance stays the same 

using both the combination of these two features or each one on its own. No comparison 

has been made with other methods. 

In addition to evolutionary information, some sequence-based methods add 

predicted structural information. Ofran et al. introduced ISIS (Ofran & Rost 2007a), an 

improvement to their previous work (Ofran & Rost 2003b), which trains a NN 

integrating both evolutionary profiles and knowledge of predicted structural features, 

i.e. surface accessibility and secondary structure (Ofran & Rost 2007a). The 

performance of their ISIS reached 61% specificity and 20% sensitivity. This shows that 

the use of predicted structural information significantly improves the sensitivity which 

was 0.5% in their previous work. ISIS prediction of few residues (low sensitivity) with 

high accuracy, suggests the importance of these residues in binding which are referred 

as hot-spots residues (Fernández-Recio 2011; Ofran & Rost 2007b). Another method 

which uses predicted structural features is PSIVER (Murakami & Mizuguchi 2010) 

which for the first time trained a Naïve Bays classifier (NBC) and kernel density 

estimation (KDE) with two sequence features (position-specific scoring matrix (PSSM) 

and predicted accessibility). PSSM is a sequence profile which provides a measure of 

conservation based on the composition of a sequence and of its homologues identified 

by PSI-BLAST (De Vries & Bonvin 2008).  PSIVER is motivated by the fact that, since 

in PPI the correlations between different features are not well understood, NBC, which 

ignores dependency between the input parameters, may perform better in classifications. 

PSIVER, outperforms ISIS with a F-measure of 32.5 %, and 26.3%, respectively. 

To further advance sequence-based methods, work has been done to improve the 

training sets of the machine learning classifiers. The reason behind this is that the 

numbers of positive samples (interacting residues) are smaller than the negative samples 

which create an imbalance between training sets. Therefore, to deal with this problem, 

Chen and Jeong (Chen & Jeong 2009) introduced a RF based classifier which uses a 

much larger number of features (1050 features per residue) extracted from 

physicochemical property, evolutionary conservation score, amino acid distances, and 
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PSSM. They argue that since the properties which highlight the interfaces are not fully 

understood, taking a large number of features can improve the prediction. Comparison 

with Wang et al. (Wang et al. 2006) and Yan et al. (Yan et al. 2004) shows an 

improvement in prediction while dealing with unbalanced data in their training set 

(Based on a leave-one-out ROC Curve for specificity rate of 70%, the sensitivities of 

Yan’s, Wang’s and Chen and Jeong are 30%, 39% and 73%, respectively). Another 

approach by Chen and Li  (Chen & Li 2010) uses  ten-SVMs trained on the residues’ 

hydrophobic and evolutionary information of different subsets of hetero-complexes 

proteins. If the prediction output of all the SVMs for a specific residue is above a 

threshold,  that residue is considered as belonging to the interface. To deal with training 

imbalance, they create several subsets of positive and negative training data of similar 

size having no overlap. Recently, they improved their work by introducing PPI-OD (P. 

Chen et al. 2012) which targets removing interface and non-interface residues outliers 

from the training data. Comparisons with their previous work (Chen & Li 2010), PPI-

OD improves the MCC and F1 by 4.4% and 3.6%, respectively. Wang et al. introduced 

another predictor (Wang et al. 2012) using an SVM trained with a feature vector of 17 

amino acid generated from AAindex database (Kawashima & Kanehisa 2000). They use 

a ten-fold cross-validation strategy and to overcome training imbalance, negative 

samples were selected randomly based on the size of positive samples. On a dataset of 

hetero-complexes used in their previous study (Wang et al. 2006) they achieved a 

sensitivity and specificity of 57.9% and 65.0%, respectively. While in their previous 

work they achieved globally lower performance - 49.7%  specificity - despite better 

sensitivity, i.e. 66.3% sensitivity (Wang et al. 2006). Unfortunately, no comparison with 

other methods is provided in their study.  

Another trend in sequence only prediction takes into account knowledge of the 

interacting partner. Ahmad and Mizuguchi  (Ahmad & Mizuguchi 2011) trained a two-

stage NN in which, instead of a single residue, a residue pair PSSM and propensity are 

considered.  Comparison to PSIVER shows a larger area under the RocCurve (63.8 to 

54.1). For large scale applications, PIPE-Sites (Amos-Binks et al. 2011) was introduced. 

PIPE-Sites not only predicts binding site, but also predicts if two QPs interact.  PIPE-

Sites (Amos-Binks et al. 2011) uses a sliding sequence window which traverses both 

protein sequences separately. For each pair of windows, PIPE-Sites searches for their 
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co-occurrence in a sequence database of known protein-protein interactions. Using all 

the pairs of windows and their co-occurrence, a 3D landscape is generated where high 

peaks correspondents to the interacting sub-sequences. If a landscape is showing a flat 

distribution PIPE-Sites will assume that the QPs do not interact.       

2.3.1.2   Structure-based Predictors 

Methods in this group require the 3D structure of the QP in order to perform 

predictions. A small number of methods mainly use evolutionary information of the 

sequences to detect interfaces while the 3D structure is required in the final step to 

detect potential binding patches (see section 2.3.1.2.1). The majority of structure-based 

methods require the 3D structure to export structural features used to detect interfaces. 

These methods can be combined with sequential information (see section 2.3.1.2.2).  

Another trend in this group combines docking with structural features to generate 

models (see section 2.3.1.2.3). 

2.3.1.2.1 3D Evolutionary-based Predictors 

Methods in this group infer interfaces from homologous proteins by analysing 

evolutionary information and sequence conservations. The 3D structure of the QP is 

required at the last stage for clustering the conserved residues in a final patch of 

interface residues. Similar to methods in section 2.3.1.1.3, these methods are inspired by 

the success of using evolutionary phylogenetic in (Lichtarge et al. 1996).  Lichtarge et al 

introduced Evolutionary Trace (ET) (Lichtarge et al. 1996) which uses a phylogenetic 

tree built from a Multiple Sequence Alignment of homologous proteins to calculate 

residue conservation scores. Then, residues with the best scores are mapped on the QP’s 

3D structure and clustered to infer binding patches. ConSurf (Ashkenazy et al. 2010) is 

a variant of the ET method, which takes advantage of empirical Bayesian and maximum 

likelihood to calculate the conservation score. Joint Evolutionary Trace (JET) (Engelen 

et al. 2009) is an extension of ET, which is designed for large scale applications and is 

able to make predictions even with weak signals. JET differs from the ET method by 

improving sequence alignment and consideration of residues’ conservation and physio-

chemical properties in the clustering stage. Comparison on Huang dataset (Caffrey et al. 
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2004), shows 34.2% sensitivity and 85.1% specificity for ET and 39.8% sensitivity and 

86.9% specificity for JET. 

2.3.1.2.2 Predictors Combining Evolutionary and 3D Intrinsic 

Information 

Methods in this category use 3D structural features or their combination with 

sequence properties to predict interfaces. The story of analysing contact residue goes 

back to 1975 with the pivotal work of Chothia & Janin (Chothia & Janin 1975) on a 

small number of proteins. They discovered that hydrophobicity is a key element to 

stabilising protein-protein interactions. Later, Jones and Thornton (Jones & Thornton 

1997b), studied a larger dataset, investigating the surface of protein complexes for six 

parameters; solvation potential, residue interface propensity, hydrophobicity, planarity, 

protrusion and accessible surface area. These properties where then used to detect 

patches responsible for protein interactions with 66% (39 out of 59) success rate (Jones 

& Thornton 1997a; Jones & Thornton 1997b). A later study, SHARP2 (Murakami & 

Jones 2006) used a parametric combination of the same features to provide a fast and 

robust server for Jones & Thornton’s (Jones & Thornton 1997b) work. 

  To investigate the importance of 3D information for predicting interface 

residues, Koike and Takagi (Koike & Takagi 2004) trained a SVM using both sequence 

profile only and a combination of sequence and structure data such as accessible surface 

area (ASA) and patch flatness. Using sequence-only information they achieved 

precision and recall of ~40% and 39%, respectively, while a combination with structure 

information improved significantly performance displaying precision and recall of 

~56% and 50%, respectively. Also, Sikić et al (Šikić et al. 2009) integrated both 

sequence information only and a combination of sequence and structure data (such as 

accessible surface area, protrusion  and depth index) into Random Forest. Their 

sequence-based prediction scheme achieved a precision of 84% with a 26% recall and 

an F-measure of 40%, whereas using structure, the overall prediction performance 

increased to, respectively, 76%, 38% and 51%. Moreover, the overall precision-recall 

curve is higher when 3D information is used. Those results were confirmed by (Zhou & 

Qin 2007) who argued that, since in sequence-based methods non-interface residues 
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cannot be trivially eliminated, fewer interface residues information is available for 

prediction. 

As presented above usage of structural properties improves sequence-based 

predictors. However, there has not been a single property which could completely 

discriminate interface residues form other residues. Therefore, predictors have based 

their predictions on combining multiple input properties from several residues to predict 

if a residue belongs to the interface. Therefore, structure-based methods differ from one 

another depending on what features they use and what method they use to combine 

them. These predictors are broadly divided in two groups (Zhou & Qin 2007) of (i) 

numerical value and (ii) probabilistic based predictors where they both require training 

set. Below each of these groups and their techniques to perform prediction is discussed. 

2.3.1.2.2.1 Numerical Value-based Predictors 

In this group for an input data    of residue  , which is the residue under study,  

and its spatially neighbouring residues  , with values   , a scoring function is defined as: 

             
    

Where   represents the structural (and sequential) features defined for each 

residue and   is a number of coefficients that is optimised through training. Using this 

function   is determined as interface or non-interface based on a numerical value; for 

example   will be considered as interface if    is above a threshold (Zhou & Qin 2007). 

Numerical value-based methods for interface prediction are discussed below. 

To calculate Si some methods (Li et al. 2006; Kufareva et al. 2007) use a linear 

combination of input data. PIER (Kufareva et al. 2007) uses linear regression (partial 

least squares (PLS)) of statistical properties of protein surface at atomic level. They also 

investigated the prediction performance by adding the evolutionary information to the 

properties set. They concluded that this has only 7-10% contribution while atomic 

features have 90-93% contribution. Although linear combination is a really simple 

method, general predictors using this approach have produced lower performance in 

comparison to other predictors (Zhou & Qin 2007).  

Therefore to improve prediction, a set of numerical value-based methods use 

scoring functions which are inspired by empirical energy functions. These scoring 

functions model contribution terms of different input data and therefore allow better 
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discrimination between interface and non-interface properties in comparison to linear 

methods. InterProSurf (Negi et al. 2007) uses interface residue propensity derived from 

a dataset of structures along with ASA in a parametric scoring function to make 

predictions. Similarly, WHISCY (De Vries et al. 2006) predicts interfaces using a 

scoring function with parametric combination of interface propensity and surface 

conservation. Taking advantage of the fact that interface residues have higher side-chain 

energy (Cole & Warwicker 2002), in addition to interface propensity and residue 

conservation, Liang et al. (Liang et al. 2006) introduced an empirical energy function 

based on a linear combination of side chain energy score into their system, PINUP. One 

drawback of these scoring functions is that due to their complicated terms, which make 

them a better predictor than linear combination, they require deep physical insight 

(Zhou & Qin 2007). 

Therefore, machine learning technique was introduced which allow a simpler 

strategy for combining input data. One of the widely used numerical value-based 

machine leaning methods is SVM. In SVM non-linear independent input data are 

mapped to a feature space and a hyperplane is fitted to optimally separate the interface 

and non-interface data. Figure 2.2 shows an example in which SVM is used to separate 

two classes of data which are shown with red circles and blue rectangles. The aim is to 

find a hyperplane (Solid line in Figure 2.2) which divides these points as far as possible. 

In other words SVM wants to increase the margins. The data points which are located 

on the margin are called support vectors (shown by numbers 1 to 5 in Figure 2.2.A). 

Therefore, in Figure 2.2.B among the proposed hyperplanes (i.e. H1, H2 and H3), H1 is 

the best because H3 does not separate accurately between the two classes and although 

H2 does, its associated  margin is smaller than H1’s. Using this concept, Bradford and 

Westhead (Bradford & Westhead 2005) proposed PPI-Pred which is a patch-based 

SVM based method trained on seven surface properties: shape index and curvedness, 

residues conservation score, electrostatic potentials, hydrophobicity, interface 

propensities and Solvent ASA. Comparing PPI-Pred with the patch-based method of 

Jones & Thornton (Jones & Thornton 1997b), on a dataset of 47 proteins from (Jones & 

Thornton 1997b), shows a sensitivity of 72% and 64% for both methods, respectively. 

Another advantage of PPI-Pred is that it can be used for both obligate and transient 

proteins, whereas Jones & Thornton’s (Jones & Thornton 1997b) requires different 
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scoring functions to make prediction for proteins from different types. At the same time 

a residue-based predictor, Bordner and Abagyan (Bordner & Abagyan 2005) employed 

an SVM-based predictor trained with evolutionary conservation information and local 

surface properties (hydrophobicity, solvation Energy, and ASA). To generate the 

interface propensity the above mentioned methods focused on one type of complex 

since different complexes have different propensities. While Dong et al. (Dong et al. 

2007) calculates propensity using several complex types (homo-permanent, homo-

transient, hetero-permanent, and hetero-transient complexes) and along with sequence 

profile, evolutionary information and accessible surface area trains a SVM-based 

predictor. They observed that usage of propensity especially through binary profile 

generated from PSI-BLAST has a significant positive impact on prediction performance 

especially if they are combined with evolutionary information. 

 

Figure 2.2: Concept behind Support Vector Machine. Classes of data are shown with red circles 

and blue rectangles. Hyperplanes are shown in solid lines. A: Support Vectors are shown by 

numbers from 1 to5. Margin is represented by the green line. B: three hyperplanes are shown in 

solid lines. 

Comparisons of Bordner and Abagyan (Bordner & Abagyan 2005) SVM-based 

method with PIER (Kufareva et al. 2007) which is a linear value-based method has 

shown that although PIER has a better precision by ~53% but its recalls drops by ~23%. 

Therefore, predictors with a balance in their precision and recall are required. Since too 

many features can be the cause of this imbalance,  Nguyen and Rajapakse (Nguyen & 

Rajapakse 2006) proposed a SVM-based classifier only using two features: ASA and 

PSI-BLAST sequence profile . Combination of the 2 features has better prediction 
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performance than using each one individually. In accuracy, specificity and sensitivity 

they achieve 2.8%, 18%, 29% higher than Yan et al. (Yan et al. 2004) method. To 

further improve the prediction, Li et al. (Li et al. 2008) introduced a novel neighbouring 

profile using both sequential and spatial neighbours to train an SVM-based predictor. 

For each residue eight features were used: physicochemical characteristics, hydrophobic 

index, relative accessible surface area, secondary structure, sequence conservation, side-

chain environment, sequence distance, and spatial distance. Also, they classed each 

residue into four groups: interior, core interface, rim interface, and non-interface. An 

interaction area consists of a core interface surrounded by rim interfaces (Bahadur et al. 

2003). A core interface is defined as a residue which is accessible to solvent in unbound 

form while in a bound form it is zero ASA. Interaction residues which are still solvent 

accessible in the bound form are rim interface. Composition of a core interface area 

resembles the protein interior (hydrophobic core) while the rim region composition is 

similar to the protein surface (Higa & Tozzi 2008). Li et al.  SVM classifier was only 

trained using the core residues. As discussed before, one of the problems with SVM is 

that its results are impacted by the imbalance of positive and negative data in the 

training set. To solve this problem, Deng et al. (Deng et al. 2009) used an ensemble of 

bootstrap re-sampling, SVM-based fusion classifiers and weighted voting strategy. This 

allowed them to use a wider selection of sequential and structural features providing 8 

different feature spaces for training. They achieve sensitivity and specificity of 76% and 

78%, respectively. While on the same dataset, Wang et al. (Wang et al. 2006) shows 

sensitivity and specificity of 69% and 66%, respectively. In general SVM-based 

methods have outperformed the scoring function based predictors, but there is still room 

for improvement. Especially that SVM framework performs a non-parametric 

combination of input data which are assumed to be independent (Browne et al. 2010; Lo 

et al. 2005). Therefore, methods introduced NN in their predictions where input data are 

linearly combined and coefficients are assigned to inputs based on the training sets. In 

addition, NN has the ability to find complex pattern even among large number of input 

data (Fariselli et al. 2003). 

 Therefore, Zhou et al. (Zhou & Shan 2001) introduced PPISP which makes 

predictions from a 3D structure using a NN that is trained with protein’s surface 

sequence profiles and solvent accessibility of neighbouring residues. The main 
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advantage of this method is its insensitivity to structural differences by achieving 

similar performance with bound and unbound proteins. Independently, Fariselli et al. 

(Fariselli et al. 2002) also proposed a NN based system to learn from exposed residues 

on protein surfaces which are involved in interaction. Although PPISP and Fariselli et 

al. methods used different training sets, homology cut-offs and surface definitions, they 

achieved similar accuracy around 70%. PPISP was further improved using a larger 

training data set which led to increased accuracy, 80%, at the cost of lower coverage, -

17% (H Chen & Zhou 2005). Over and under prediction of protein interface was the 

main concern of PPISP therefore it was extended to Cons-PPISP (H Chen & Zhou 

2005) which performed a consensus prediction from multiple NN models with various 

accuracy and coverage. Cons-PPISP showed an improvement of 3–8 percentage points 

in accuracy in comparison to the individual models. A recent method (Y. Chen et al. 

2012) uses radial basis function (RBF) neural networks  using sequence profiles, 

entropy, relative entropy, conservation weight, accessible surface area and sequence 

variability features. Six different sliding windows of size 1, 3, 5, 7, 9 and 11 capturing 

these features for each amino acid is created. Then, six RBF-NNs are trained with these 

windows providing six groups of predictions. These predictions are then integrated 

using decision fusion (DF) and Genetic Algorithm based Selective Ensemble (GASEN), 

to make the final prediction. Using RBF-NN provides better results than NN and SVM 

but no comparison results with other methods are presented. 

Some studies have used NN to investigate the impact of specific features in 

protein binding site prediction. Porollo and Meller (Porollo & Meller 2006), studied 

relative solvent accessibility (RSA) as a fingerprint for detection of interface residues 

and comparison shows its significance to other features such as evolutionary 

conservation, physicochemical characteristics and features used by other methods. 

Therefore, they introduced SPPIDER which combines RSA with 19 other features 

(which the combination achieved best performance on the training data) with a SVM 

and a NN. Comparison with  Bordner and Abagyan (Bordner & Abagyan 2005) and 

PPI-Pred (Bradford & Westhead 2005) shows that SPIDDER achieves better 

performance (13% higher Matthews correlation coefficients (MCC) than other 

methods). Similarly, Patch Finder Plus (Stawiski et al. 2003) focused on detection of  

large electrostatic patches of proteins  using residue conservation, frequency, 
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composition, ASA, surface concavity and H-bond potentials. The main aim was to 

detect DNA-binding areas but the method can also be used for protein binding site 

prediction. An important issue regarding data processing is that some input data might 

be missing or redundant (Lin et al. 2004). Therefore methods have used RF which is a 

classification method and has shown not only to deal with missing data but also handle 

heterogeneous input data (Browne et al. 2010). VORFFIP (Segura et al. 2011) uses a 2-

step RF ensemble using residue features such as structural, energy terms, sequence 

conservation, and crystallographic B-factors. That predictor relies on a novel definition 

of residue environment using Voronoi Diagrams (Figure 2.3). VORFFIP shows better 

performance in comparison to SPIDER (Porollo & Meller 2006), WHISCY (De Vries et 

al. 2006) and Sikić et al. (Šikić et al. 2009) in which residue environments are defined 

by sequence sliding window or Euclidian distance. Recently, they expanded their 

framework to Multi-VORFFIP  (Segura et al. 2012), which aims at detecting protein-, 

peptide-, DNA- and RNA binding sites on a query protein. 

 

Figure 2.3: VORFFIP prediction pipeline and an example of Voronoi Diagram. The 2-step 

approach of VORFFIP is displayed on left, on right the Voronoi Diagram of two neighbouring 

residues are shown. Red dots display heavy atoms and coloured cells show atoms which are 

interacting with another atom of the neighbouring residue. Taken from (Blas et al. 2012). 

A larger set of input data generated only from the 3D structure was used in a  

recent study (Qiu & Wang 2012) which uses RF along with 28 properties (such as: 
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solvation energy, hydrophobicity, depth and protrusion index and B-factor). They 

perform a residues-based prediction followed by a clustering to produce patch-based 

prediction. Comparison with other patch-based methods ((Bradford & Westhead 2005; 

Bradford et al. 2006; Higa & Tozzi 2008)) shows an improved success rate. Also, the 

residue-based method shows improvements in terms of sensitivity–specificity relation: 

for example, with a specificity rate of 70%, they achieve 78% sensitivity while Yan 

(Yan et al. 2004),Wang (Wang et al. 2006), Chen and Jeong (Chen & Jeong 2009) are 

30%, 39% and 73% , respectively. Independently, Li et al. (Li et al. 2012) developed an 

RF algorithm with a Minimum Redundancy Maximal Relevance (mRMR) method 

followed by incremental feature selection (IFS). They use physicochemical/biochemical 

properties, sequence conservation, residual disorder, secondary structure and solvent 

accessibility along with five 3D features (Protrusion index, depth index (DPX), ASA, 

molecular surface area and surface curvature (SC)). They discovered that integrating the 

3D information improves the prediction and DPX and SC contribute the most. 

Comparison to Sikić et al (Šikić et al. 2009) shows an improvement in precision, 

specificity, accuracy by approximately 1%, 3% and 2%, respectively.  

All the above mentioned numerical value based methods classify an input in a 

binary manner as interface or non-interface. Although usage of SVM, NN and RF has 

improved the prediction performance over linear regression and scoring function-based 

methods, at the same time transparency is lost in the prediction (Zhou & Qin 2007). 

2.3.1.2.2.2 Probabilistic-based Predictors 

The aim of the probabilistic-based methods is to find the conditional probability 

   |         of   being interface or non-interface, where   is the residue under study 

with    to    properties. If              |         is above a certain threshold 

then   is considered as interface. Conditional probability can be generated from the 

training sets using several methods such as: naïve Bayesian, Bayesian Network, Hidden 

Markov Model and Conditional Random Forest.  

Neuvirth et al. (Neuvirth et al. 2004) studied the properties of the transient 

protein–protein hetero-complexes interfaces both in bound and unbound forms. They 

trained a patch-based naive Bayesian, ProMate, with a combination of different 

properties such as evolutionary conservation, secondary information, hydrophobicity, 
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chemical component, geometric properties and information from relevant crystal 

structures. For 70% of the proteins ProMate was able to correctly predict the location of 

the binding site (Neuvirth et al. 2004). A prediction is considered as correct if more than 

half of the predicted interface of a continuous patch is an interface in ground truth. 

Comparison of ProMate with the SVM-based predictor of  Li et al. (Li et al. 2008), on a 

dataset of 50 proteins, shows that Li et al. perform better than Promate, with  60.7% 

sensitivity and 41.9% specificity while ProMate resulted in 9.9% sensitivity and 28.1% 

specificity. While ProMate assumes that input data are independent, Bradford et al. 

(Bradford et al. 2006) were the first to introduce dependency between data using a 

Bayesian networks trained on surface patches properties.  In a leave-one-out cross 

validation the Bayes classifier achieves a success rate of 82% in comparison to their 

SVM-based approach which was 76%. This patch-based framework can handle missing 

data and even without evolutionary information it still achieves a performance 

comparable to the original Bayes classifier.  Another Bayesian classifier-based method 

using core and rim interface definition was introduced by Higa and Tozzi (Higa & Tozzi 

2008). They use a two-stage Bayesian classifier with 28 chemical and structural 

properties where the first stage detects the core residues and the second stage expands 

the core residues and detect rim residues around the core. Their patch-based predictor 

made successful prediction in 82.1% of the cases which is similar to Bradford et al. 

(Bradford et al. 2006) Bayesian method. 

Li et al. (Li et al. 2007) argues that the pervious methods which look at the 

interface prediction as a classification problem, do not consider the relationship between 

interface and non-interface of neighbouring residues. To overcome this problem they 

use sequence labelling using conditional random fields (CRFs) trained with sequence 

profile and residue accessible surface area. Comparison with NN and SVM methods 

shows CRF-based methods performs better. Also adding the residue conservation 

feature to the CRF-based method did not change the results. To improve the 

performance further, for the sequential labelling task they used hidden Markov support 

vector machine (HM-SVM) (Liu et al. 2009) and comparing to their CRFs-based 

method they achieved better performance. On a mixed data set of hetero-complexes and 

homo-complexes, the F1 score for the NN, SVM, CRF and HM-SVM base methods are 

44.7%, 48.1%, 49.9% and 51.0%, respectively. Since HM-SVM has shown the best 
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performance, recently Savojardo et al. (Savojardo et al. 2012) has introduced ISPRED2. 

This method uses relative solvent accessibility (RSA) used by SPPIDER (Porollo & 

Meller 2006), with evolutionary information (PSSM) to make predictions. Comparison 

to Wang et al. (Wang et al. 2006), Nguyen and Rajapakse (Nguyen & Rajapakse 2006), 

Deng et al. (Deng et al. 2009), Liu et al. (Liu et al. 2009) shows an increase of 4%, 

19%, 2% and 15% in F1 measure, respectively.  

 The different approaches for combining interface properties into one prediction 

framework, was discussed above. Each one has their pros and cons and generally they 

do not significantly improve each other’s performance. Since combinations of 

classifiers tend to perform better than individual ones, as it was shown for protein 

structure predictions (Huiling Chen & Zhou 2005), a few interface predictor methods 

have integrated interface predictors into one meta framework. 

PI2PE (Tjong et al. 2007) combines cons-PPISP (H Chen & Zhou 2005),  DNA-

Interaction Site Prediction from a List of Adjacent Residues (DISPLAR) (Tjong & 

Zhou 2007) and Weighted Ensemble Solvent Accessibility (WESA) (Huiling Chen & 

Zhou 2005).  WESA itself is a meta-predictor of ASA using protein sequence. 

Unfortunately, there are no results available on the performance of PI2PE in comparison 

to the individual methods. While in PI2PE only one protein inetrafce predictor was 

used, to benefit from more interface predictors meta-PPISP (Qin & Zhou 2007b), 

combines the scores of PINUP, Cons-PPISP and ProMate using linear regression 

analysis. As expected it outperformed individual methods by increasing their accuracy 

by an additional 4.8 to 18.2% points. Similar experiment conducted by Zhou et al. 

(Zhou & Qin 2007) using Docking Benchmark 2.0 (Mintseris et al. 2005)confirmed the 

superiority of Meta-PPISP  over PINUP (Liang et al. 2006), ProMate (Neuvirth et al. 

2004) and Cons-PPISP (H Chen & Zhou 2005) with accuracy of 50, 48, 38 and 36%, 

respectively. On the same dataset the accuracy for PPI-Pred and SPIDDER were 36% 

and 38%, respectively (Zhou & Qin 2007). In addition to PINUP and ProMate, MetaPPI 

(Huang & Schroeder 2008) combined PPI-Pred, PPISP, and SPIDER into one 

framework. Their main aim was to study usage of meta interface prediction for ranking 

docking models. MetaPPI improved success rates by 15% in comparison to the best 

individual predictors.  While meta predictors are an easy way to combine several 
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predictors, one should consider the contribution of each individual method when 

analysing the results (Fernández-Recio 2011). 

The aim of all the above mentioned numerical value and probabilistic based 

methods is to combine various features to distinguish interface and non-interface 

residues. However, as mentioned by Neuvirth et al. (Neuvirth et al. 2007) the 

combination of features are informative if they are orthogonal. This means that merging 

features can result in a better predictor once they are less correlated. That is the reason 

why adding new properties to already available methods have little impact on the their 

performance; because combined features are not orthogonal enough (De Vries & 

Bonvin 2008). Therefore, interface prediction has reached saturation where combination 

of the same features cannot improve the predictions. Apart from that, classifiers 

performance and robustness increases when a smaller set of complementary properties 

are used instead of large amount of dependent noisy features (Zellner et al. 2012; 

Hermes & Buhmann 2000). Therefore, a recent study introduces Pres-Cont (Zellner et 

al. 2012) a robust SVM-based predictor based on ASA, hydrophobicity, conservation, 

and the local environment of each surface residues properties. Using only four features 

Pres-Cont performs as good as the SPPIDER, ProMate, and meta-PPISP, which are 

more complicated. These methods perform differently depending on the protein type 

while Pres-Cont prediction quality remains the same for both permanent and transient 

complexes. 

2.3.1.2.3 3D Docking Predictors 

A different approach uses protein-protein docking to generate potential 

interfaces. Since docking methods have shown to generate native-like models among 

their solution space, they can be used to study the interface used for creating complexes.  

Therefore, Fernández et al. (Fernández-Recio et al. 2004) uses the 100 lowest-energy 

docking models to compute a normalized interface propensity score for identifying 

interface residues. Performance of this method on 21 unbound PPI has a positive 

predicted value of 81%, while the sensitivity is quite low. But since the accuracy is 

high, these results suggest that the predicted interfaces are hot-spots (Fernández-Recio 

2011). Since desolvation has been shown to be important in protein binding, ODA 

(docking-based prediction is Optimal Docking Area)(Fernandez-Recio et al. 2005) 
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based its prediction on finding surface patches of optimal docking desolvation energy 

(Figure 2.4). ODA picks a set of starting points which are the central coordinates of 

each residues side-chain. For each staring point different patch sizes are calculated 

iteratively. Desolvation energy is calculated for each patch until the most energetically 

favourable patch is detected. On a dataset of non-obligate protein hetero-complexes in 

80% of the cases ODA prediction corresponds to real hotspot residues. One of the main 

limitation of ODA is that it fails in cases where electrostatic plays a more important role 

than desolvation (Fernández-Recio 2011).  

 

 

Figure 2.4: Schematic representation of Optimal Docking Area (ODA) predictor. A) Starting points 

are defined on the protein side-chains and shown around the protein. B) For each starting point 

different interface patch sizes are calculated. Desolvation energy is calculated for each patch until 

the most energetically favourable patch is detected. C) Each starting point will be labelled with its 

best ODA score. Taken from (Fernandez-Recio et al. 2005). 
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Similar to Fernández et al.’s (Fernández-Recio et al. 2004) approach, DoBi (Guo 

et al. 2012) first generates docked configurations and then studies their interfaces. DoBi 

enumerates all the possible configuration of two proteins and scores them based on an 

Atomic Contact Energy (ACE) function. The best scoring configurations are selected 

and their binding residues are predicted as interfaces. Comparison between DoBi and 

Fernández et al.’s (Fernández-Recio et al. 2004) shows DoBi has a better performance 

by achieving 44.3%, 70.5%, 39.6%, 0.54 for accuracy, coverage, success rate and F-

measure, respectively, while Fernández et al. achieves 39.3%, 72.7%, 37.2% and 0.51 

for the same measures, respectively.  On a benchmark of 41 complexes from DBMK 2.0 

and 27 targets of CAPRI, DoBi achieves an F-score of 0.55, which outperforms 

MetaPPI, meta-PPISP and PPI-Pred (F-scores of 0.35, 0.43 and 0.32, respectively). On 

another dataset comprising 57 non-homologous proteins, DoBi outperforms with an F-

score of 0.56, while PINUP and ProMate have the F-scores 0.43 and 0.21, respectively. 

Therefore, DoBi shows a performance better than many strong ‘Predictors Combining 

Evolutionary and 3D Intrinsic Information’, but at the same time its application is 

limited since DoBi requires two protein chains in order to perform predictions and also 

generation of docking models is computationally expensive. 

2.3.2 Template-based Predictors 

Predictors in this group use available experimental 3D structures as templates to 

predict interfaces. Some of them take advantage of the structures homologous to the QP 

(see section 2.3.2.1) while others use structural neighbours which have the same fold as 

the QP structure (see section 2.3.2.2). These methods are discussed in more details 

below. 

2.3.2.1 Homologous Template-based Predictors 

Early studies (Ma et al. 2003; Hu et al. 2000) showed that residues which are 

structurally conserved at the binding sites (in particular polar residues) of a protein 

family belong to a hot-spot. They discovered that using these structurally conserved 

residues a binding site can be distinguished from the surface patches of the protein. 

Also, comparing protein complexes in the same classification of SCOP (Andreeva et al. 

2008) shows homologous proteins interact with their partners keeping the same 
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orientation (Aloy et al. 2003). Moreover, binding site localisation within each family 

has proven to be similar regardless of the similarity of their binding partner (Korkin et 

al. 2005).  A more detailed study of the physico-chemical properties of the interface 

residues shows higher similarity in homologous proteins than non-homologous ones 

(Martin 2010). Similar studies have been investigated binding site similarities at protein 

domains (Shoemaker et al. 2006; Han et al. 2006; Kim & Ison 2005; Littler & Hubbard 

2005). Therefore, integration of homologous structural information into interface 

predictors can improve performance. 

Exploiting results of these studies, Chung et al. (Chung et al. 2005) were first to 

investigate binding site detection based on structurally conserved residues. For each 

protein, the homologous structures were generated from the same SCOP family level. 

Conserved residues were selected using a conservation score based on structure 

alignment and weighted by a normalised B-factor. To detect interfaces, they trained a 

SVM based system combining sequence profiles of neighbouring residues, ASA and 

conservation scores. Then they clustered residues returned by the SVM based system as 

potential interface residues to reject those which are isolated. On a dataset of 274 non-

redundant chains of hetero-complexes, respectively 52%, 77% and 21% of the binding 

sites were predicted precisely, correctly and partially. Precisely and correctly 

predictions means more than 70% and 50%, respectively, of the ground truth interfaces 

were predicted in the binding site. A partial prediction refers to identification of only a 

few ground truth interface residues at the binding site. In addition, comparison of the 

above trained SVM with an SVM which does not involve the structural conservation 

score shows that integration of conservation score improves the correct prediction by 

17%. 

In addition to structural conservation, physico-chemical conservation was 

explored using a graph-based approach by Konc and Janezic (Konc & Janezic 2007) for 

detection of interaction sites. In this approach only one or two homologues structures 

with high sequence identity to QP were explored.  Later on, the algorithm was extended 

to take advantage of a larger number of homologues (Carl et al. 2008). Although these 

methods confirm that the structural binding site conservation is an important factor, 

further work is required to increase the sensitivity of their methods.  
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A combination of sequence and structure conservation scores, was introduced in 

IBIS (Shoemaker et al. 2010; Tyagi et al. 2012) to detect potential binding sites. IBIS 

starts with generating homologous complexes with at least 30% sequence similarity to 

the QP. Structures are superposed on the QP, retaining the ones whose binding sites 

have an overlap of at least 75% with the QP structure (Figure 2.5). Using the alignment, 

a Structure-based-MSA (S-MSA) is created which allows highlighting the interface 

residues of homologues. Then, using the S-MSA a Binding site similarity matrix is 

generated by comparing the structure and sequence of each homologue against all other 

homologues. This matrix is used to cluster similar binding sites from different 

homologues into the same group. Clusters are then ranked based on a weighted 

combination of sequence similarity score, conservation score, average of contact and 

PSSM score. The inferred binding site of the best rank group is then mapped onto the 

QP (more details are provided in chapter 4). Comparison between IBIS and HomPPI 

demonstrates the value of using structural data to generate an MSA, since on a dataset 

of 188 proteins introduced in (Q. C. Zhang et al. 2010)  IBIS with 69.7 precision and 

72.0 recall performs significantly better than HomPPI with 62.8 precision and 50.4 

recall.  
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Figure 2.5: IBIS predictor Pipeline. For a Query Protein a set of homologues are generated. Step1: 

QP and homologues are structurally aligned. Step2: S-MSA is built and interface residues are 

marked on the S-MSA.Step3:asimilaritymatrixofhomologues iscreated.Step4:Homologue’s

binding sites are clustered. Step5: Scores are given to each cluster and the best scored one is 

mapped onto the QP. Taken from (Tyagi et al. 2012). 

2.3.2.2 Structural Neighbour-based Predictors 

As we saw in section 2.3.2.1, homologous structures have been used to predict 

protein interfaces, function and complexes. These studies have confirmed the significant 

structural conservation of binding sites among proteins within one family. However, 

although closer homologous proteins increase the reliability of predictions, at the same 

time it limits the number of proteins which a prediction can be made for: homologous 

template-based predictors are limited to the availability of homologues structures of the 

QP.  

Petrey et al. (Petrey et al. 2009) demonstrated that for those proteins which 

homologous structural information fails to provide a functional classification, functional 

relationship can be detected by remote structural neighbours. Structural neighbours refer 

to proteins which are structurally similar to the QP even if they do not have any 

evolutionary relationship. Russell et al. (Russell et al. 1998) discovered that proteins 
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with similar folds but low sequence identity interact with their ligands using the same 

location. Based on this discovery, remote structural neighbours have been used for 

protein-ligand interaction prediction (Brylinski & Skolnick 2008). This was further 

extended to protein-protein interaction prediction, in which for a QP,  Konc et al. (Konc 

& Janežič 2010a; Konc & Janežič 2010b) and Carl et al. (Carl et al. 2010)  search 

through the whole PDB looking for protein which are structurally similar to the QP. 

Similarly to their previous work (Carl et al. 2008), a graph-based approach has been 

used to detect interactions sites which are both structurally and physico-chemical 

conserved among structural neighbours. Since these methods provide ranking score for 

conserved residues they have been used to detect protein binding sites. Prediction on a 

dataset of 39 protein resulted in a sensitivity of 43.9% while ConSurf showed 38. 1% 

(Konc & Janežič 2010a; Konc & Janežič 2010b). However, in their exploration for 

structural neighbours, they only kept highly structurally similar proteins which still 

prevent prediction for proteins without close structural neighbours. Zhang et al. further 

studied (Q. C. Zhang et al. 2010) the extent that remote structural neighbours can be 

exploited for detection of PPIs. They discovered structurally similar proteins (structural 

neighbours) display similar interaction sites which are evolutionary conserved (Q. C. 

Zhang et al. 2010) and even among remote structural neighbours a significant level of 

interface conservation has been recognised. They also confirmed that the use of 

structural neighbours increases the accuracy and coverage significantly in comparison to 

methods which do not use 3D information. Recently, in a large scale study Kundrotas et 

al. (Kundrotas et al. 2012) investigated the extend of structural templates availability in 

PDB to model PPIs. Based on their study for 33,537 complexes out of 33,840 (99%) 

structural templates are available to model the PPI. Comparing the templates to the 

experimental complexes, show that one-third of the templates are good quality. 

Kundrotas et al. (Kundrotas et al. 2012) investigations confirm Zhang et al.’s (Q. C. 

Zhang et al. 2010) study on the completeness of PDB (Berman et al. 2000) to model 

PPIs. 

Based on these observation, Zhang et al. (Q. C. Zhang et al. 2010) introduced 

PredUs which extracts proteins which are structurally similar to the QP and maps 

interacting residues from structural neighbours onto QP even if they do not display any 

homology. PredUs structurally aligns the QP on the structurally similar protein, counts 
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the interfaces at each position and builds a contact map. Then a contact frequency map 

is built using the weighted sum of the individual contact maps. That frequency map is 

used to predict QP interfaces. Figure 2.6 shows a schematic view of this process. 

Comparison of PredUs with Promate, cons-PPISP and PINUP on DBMK 3.0 (Hwang et 

al. 2008) and CAPRI dataset (Lensink & Wodak 2010). The precision of PredUs is 

similar to others but the recall has improved significantly. This shows that PredUs, by 

taking advantage of the 3D structures of structural neighbours, can detect interface 

residues which are not distinguishable by methods which only explore the 3D structural 

features of the QP. Recently, PredUs (Zhang et al. 2011) has used contact frequencies 

along with SVM to predict if a surface residue belongs to an interface or not. On 

DBMK3, SVM-based PredUs reaches precision and recall of 50% and 58% while their 

previous approach (Q. C. Zhang et al. 2010) achieved 44% and 46%, respectively. 

 

Figure 2.6: Schematic representation of PredUs contact and contact frequency maps. The QP is 

coloured in brown and has seven residues with five on the surface. The green line represents the Ni 

structural neighbour and Pi represents its interacting partner. Interfaces of Ni are mapped on the 

QP and the contact map is updated. Black squares on contact map are non-surface residues and 1 

and 0 represent interaction or non-interaction respectively. Contact frequency map is built using 

the individual contact maps. Taken from (Q. C. Zhang et al. 2010). 

Whereas PredUs depends on the existence of global structural neighbours, PrISE 

proposes to deal with this limitation by predicting interface residues from local 
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structural similarity only (Jordan et al. 2012). To achieve this, they created a repository 

of structural elements (SE) generated from PDB (Berman et al. 2000). For each SE of 

the query protein (consisting of a central residue and its neighbours) a set of similar SEs 

are extracted from the repository and a weight is assigned to them based on their 

similarity to QP. Finally, that central residue of QP is predicted as interface if a 

weighted majority of its similar SEs is classified as interface residue. Although PrISE is 

more general than PredUs, it displays comparable performance. In comparison with 

Carl et al. (Carl et al. 2010), PrISE has demonstrated an increase of ~25% in recall, 

precision and F1 score. Also, comparisons with Promate, PINUP, Cons-PPISP, and 

Meta-PPISP confirmed the superiority of template-based methods.  

  

2.3.3 Conclusion 

Various methods have been proposed for predicting protein interfaces as 

mentioned above. These methods and their main features are summarised in Table 2.1. 

A high number of methods investigate protein sequential or structural features in order 

to characterise protein interfaces. Usage of 3D structural properties has improved the 

sequence-based predictions.  Moreover, evolutionary conservation was shown to be an 

important property. For example, HomPPI using sequence-based evolutionary 

information outperforms the best performing structure-based methods such as PIER and 

Promate based on review studies in (Zhou & Qin 2007; De Vries & Bonvin 2008). 

Therefore, methods have integrated various structural features along with evolutionary 

information to increase performance. 

The combination of different features using various techniques has been 

investigated by intrinsic-based predictors. However, it seems that these methods have 

reached their saturation, and combination of more properties does not improve their 

prediction performance (Neuvirth et al. 2007; De Vries & Bonvin 2008; Zellner et al. 

2012). Combining properties is only useful if they provide complementary information 

rather than adding redundant information. Also, too many properties will cause over 

fitting of classifier methods (Zellner et al. 2012). 

On the other hand, many studies have investigated the 3D structure of binding 

sites among protein families. They discovered that the binding site localisation and 
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structure are conserved among homologous. These properties have improved the 

detection of functional residues and protein-ligand binding sites. Therefore, predictors 

took advantage of structurally conserved residues among homologous proteins to 

improve binding site predictions as exemplified in the comparison between IBIS and 

HomPPI, which, in addition from sequence conservation, takes into account structural 

conservation (Tyagi et al. 2012).  

Although homologous template-based predictors improve the predictions, they 

are limited to those proteins whose homologous structure exists. Therefore, methods 

have extended their search for templates to structural neighbours, since interface 

conservation exists even among remote structural neighbours. In addition, with the 

increase in experimentally determined 3D complexes good quality templates can be 

found for many proteins  (Kundrotas et al. 2012). Therefore, usage of structural 

neighbours is the current focus of template-based protein interfaces predictors.  

 Although, template-based methods are currently the predictors under the main 

focus, one of their main limitations is their dependency to availability of the QP 3D 

structure. Also, these predictors have not investigated the contribution of interacting 

partners of structural neighbours in the prediction. In addition, since these methods 

perform structural comparisons their computational time is high which limits their 

application to high-throughput predictions. 
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Table 2.1: Protein interface predictors. Method column refers to the technique used to combine 

features. Cells with * refer to predicted structural features. Cells annotated with ψ highlight

indirect use of intrinsic features which is based on sequence co-occurrence.     
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              Carl et al. 2010 graph based 

              PredUs 2011 SVM 

              PrISE 2012 Parametric 

               

2.4 Protein Docking  

Protein-Protein interactions play a critical role in the molecular processes that 

take place in the living cell. Therefore, structural knowledge on PPI are really important 

for drug design (Kundrotas et al. 2012). Experimental techniques such as 

Crystallographic (X-ray) and nuclear magnetic resonance (NMR) have been used to 

determine complexes’ structures (Ritchie 2008). However, since these methods are slow 

and require expensive resources, they cannot be used for high-throughput analysis of 

protein-protein complexes (Russell et al. 2004). Therefore, docking techniques are 

required to uncover genome-wide PPI.  

Protein-protein docking aims to computationally predict the 3D structure of a 

protein-protein complex using the individual structures of its components. Performances 

of docking algorithms are compared biannually in the CAPRI (Critical Assessment of 

Predicted Interaction) competition (Janin & Wodak 2007; Fleishman et al. 2011) and 

are evaluated against larger protein docking benchmarks (Mintseris et al. 2005; Hwang, 

Vreven, Janin, et al. 2010; Hwang et al. 2008), designed  in such a way that predictions 

can be assessed according to their level of difficulty. 
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Most of the designed docking methods perform binary docking, i.e. it involves 

only two protein chains. A number of methods have introduced multimeric protein 

complex prediction, but due to their complexity not many studies have investigated 

them. Some of these docking methods are restricted based on the complex type (such as 

homomeric and/or symmetric complexes) (André et al. 2007; Berchanski & Eisenstein 

2003; Comeau & Camacho 2005; Schneidman-Duhovny et al. 2005b) while others can 

predict any type of complexes (Karaca et al. 2010; Esquivel-Rodríguez et al. 2012; 

Inbar et al. 2005). Since these methods are built upon pairwise protein docking, in this 

chapter we will focus only on binary docking methods and by ‘docking’ we will be 

simply referring to binary docking.  

Docking algorithms can be divided into two groups (Kundrotas et al. 2012): (i) 

template-free docking: in which the whole configuration space is investigated. (ii) 

template-based docking: in which already known similar complexes to the proteins of 

interest are used as a template to generate new complexes. Here we first discuss the 

methodology behind template-free docking and then discuss the importance of 

template-based docking to produce large-scale PPIs.  

Although numerous docking methods have been proposed, their comparison in 

terms of quantitative measures is a difficult task. First, many different factors such as 

backbone RMSD, interface RMSD and fraction of contacts contribute toward quality of 

one model. Also, docking methods may target different difficulties in docking, for 

example one might only deal with side-chain flexibility while others solve backbone 

flexibilities. Therefore, in this section instead of using quantitative measures to compare 

methods their performances in CAPRI predictions are mainly considered.  

2.4.1 Template-free docking 

These methods referred as ab initio produce protein complexes (Kastritis & 

Bonvin 2010) following two main consecutive procedures. The first step is sampling in 

which a large number  of docked orientations (decoys) are generated (Ritchie 2008). 

Two main approaches have been used to generate the rigid-body docked solutions in 

this search space (Halperin et al. 2002). One uses grid or Connolly representation of the 

protein and investigates the possible conformational space using techniques such as 

geometric hashing and fast Fourier transform (FFT) (Ritchie 2008). The other one 
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screens part of the solution space using either Monte Carlo (MC) simulated annealing, 

molecular dynamics (MD), or genetic algorithms (GA). Although current docking 

methods are successful at generating near-native conformations in the sampling 

procedure, the main issue is to detect those conformations among a pool of decoys 

Therefore, docking methods have introduced a second stage, refinement, in 

which docked models are scored and re-ranked using elaborated scoring functions. 

Moreover, possible backbone and side-chain flexibility are considered at this stage. The 

multi-stage docking procedure is illustrated in Figure 2.7. Note that experimental data 

can also be used to assist docking models (section 2.4.1.3). 

 

Figure 2.7: Template-free docking methods general pipeline. In the first stage, docking methods 

generate rigid body docking of the ligand-receptor. Then, at the refinement stage models are scored 

and re-ranked using elaborated scoring functions. Backbone and side-chain flexibility are also 

considered at the refinement stage. Experimental data can be used at different stages to assist the 

docking procedure. 

An important factor in docking procedures is the requirement of computational 

efficiency. As a consequence, rigid-body docking uses a low-resolution (course-

grained) protein representation along with fast energy scoring functions (Vakser 2013). 

Course-grained is a simplified representation which range from residue representation to 

selection of side chain centroid.  Low resolution models implicitly account for local 

side-chain conformational flexibility (Gray et al. 2003) by allowing some overlapping 

between them (see section 2.4.1.2.1).  In the refinements stage, more expensive scoring 

functions can be used to score docked models. Ideally, a scoring function based on 
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physico-chemical principles, along with atomic representation of atoms can discriminate 

between the native-like and non-native models. However, such scores are both 

computationally expensive and error prone since they are sensitive to any 

conformational changes upon binding (Andreani et al. 2013). Therefore, coarse-grained 

knowledge-based potentials have been used both in fast scoring functions and in 

refinement stage.  They are less sensitive to structural inaccuracy such as x-ray unbound 

models and can also model proteins for high-throughput interaction network. They have 

shown to preserve most of the useful information which can be detailed in an atomic-

base scoring function (Fitzgerald et al. 2007; Zhang et al. 2004). 

In the next few sections we first discuss how template-free docking approaches 

search through the conformational space (section 2.4.1.1) and the scoring functions they 

use for detecting plausible conformations (section 2.4.1.1.1). Then, we look at different 

approaches of introducing flexibility in docking (section 2.4.1.2). The use of 

experimental data to drive docking is further discussed (section 2.4.1.3), and finally we 

look at how more detailed scoring functions will access the detection of near-native 

models (section 2.4.1.4). 

2.4.1.1 Rigid Body Docking 

Docking of two proteins started with methods which are based on geometry and 

shape complementarity criteria. Many docking methods have adopted those criteria to 

perform geometric-based rigid body. They can be divided into two groups based on 

their approach to protein representation and conformational space exploration. 

In the first approach, methods project the protein shape on a 3D Cartesian grid 

and classify each cell as surface, interior and exterior. Then, various orientations are 

generated and scored by the grid overlap between the receptor and ligand (here ligand 

refers to the interacting partner). Since the search consists of a blind six degree 

translation and rotation a vast number of models would be produced (in order of 

billions) (Ritchie 2008). Therefore, to cover this large space in an efficient time, Fast 

Fourier Transform (FFT) techniques, which were first introduced in the work of 

Katchalski-Katzir et al. (Katchalski-Katzir et al. 1992), has been proposed. In this 

technique (shown in Figure 2.8), Fourier transform is calculated for each protein 

represented in a grid. Then Fourier correlations are calculated where high correlation 
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corresponds to good surface complementarity. Best models are saved and then the 

ligand orientation is changed and FFT calculation starts again.  

 

 

Figure 2.8: fast Fourier transform technique introduced by of Katchalski-Katzir et al. (Katchalski-

Katzir et al. 1992). First, protein shapes are projected on a 3D Cartesian grid and Fast Fourier 

transforms are calculated for each protein. Second, Fourier correlations are computed and high 

correlations which correspond to good surface complementarity are stored. Finally, ligand 

orientation is changed and FFT calculation starts again 

In the second approach, proteins are represented by their surface geometric 

features. The bases of this method were established by Connolly (Connolly 1983) which 

introduced a new surface representation (see an example in Figure 2.9). In this 

representation, protein surface is processed to detect a few hundred sparse critical 

points. These points are named ‘caps’, ‘pits’ and ‘belts’ (shown in Figure 2.9), which 

respectively belong to one, two and three atoms (Janin 2013; Duhovny et al. 2002). 

Then, a graph representation is induced using these points which display the local 

geometric shape of the protein surface (concavities, convexities and flats). Geometric 

hashing (GH) which was first introduced in computer vision for object recognition 
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(Lamdan & Wolfson 1988) is used along with this representation. A hash table storing 

the ligand positions based on each triple point is search by the receptor graph points.  A 

clique-algorithm is used to match these geometric shapes on the receptor and ligand 

surface and generate docking poses which are then evaluated using a force field 

function. Examples of these docking methods are: PatchDock (Duhovny et al. 2002), 

3D-Garden (Lesk & Sternberg 2008) and SKE-Dock (Terashi et al. 2007). 

In comparison to FFT, geometric hashing is faster since a smaller set of docking 

poses  are investigated while FFT searches the whole space. On the other hand, 

geometric hashing may miss correct solutions and also requires pre-processing of 

protein surfaces (Ritchie 2008). Therefore, more methods have focused on using FFT 

which, unlike geometric hashing, can be easily integrated with other features such as 

electrostatic and hydrophobicity (Janin 2013). 

 

Figure 2.9: Connolly representation (on left) and its critical points (on right). 

‘caps’, ‘pits’ and ‘belts’ belonging to one, two and three adjacent atoms, respectively 

are represented by yellow, red and green spheres. While FFT and GH explore the whole 

conformational space, some methods have taken advantage of GA (Gardiner et al. 2001; 

Morris et al. 1998; Jones et al. 1997) and MC (Gray et al. 2003; Hart & Read 1992) 

simulated annealing algorithms to sample part of the conformational space. In GA a 

random start position is selected which further produces new generations of models 

using crossovers and mutations. In MC rigid-body docking, a random position is 

selected and one partner is translated and rotated around the other one. New models will 

be kept if they meet the Metropolis condition (accepting configurations which have a 

lower energy than the original conformation, and also accepting those with a higher 
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energy with a probability which decreases with increasing energy), allowing selection of 

models with low energy located at local minima. Then the procedure is repeated using a 

new starting conformation. This method allows flexibilities by side-chain and backbone 

dihedral angles movements. 

These shape complementarity based methods are reliable for scoring bound–

bound conformations (Lawrence & Colman 1993). But bound structures which are 

taken from already known complexes are not of predictive value (Janin 2013). For the 

more difficult and common case of unbound-unbound docking, shape complementarity 

on its own is not reliable (Katchalski-Katzir et al. 1992). In addition, shape 

complementarity scores fail to detect near-native models among the large number of 

docked solutions. Therefore, rigid docking methods should be “soft” enough to consider 

structural flexibility but at the same time to distinguish the correct poses. Therefore, to 

deal with detection of native like models, new terms have been introduced in the shape 

complementarity scoring function of the rigid-body methods (see section 2.4.1.1.1 for 

more details).  

2.4.1.1.1 Fast Scoring Functions 

Shape complementarity on its own is not reliable (Katchalski-Katzir et al. 1992) 

to detect near-native models. Moreover, electrostatic has shown to be important in 

protein interactions (Sheinerman et al. 2000; Tobias 2001). Therefore, docking methods 

have integrated electrostatic forces into scoring function. FTDOCK (Gabb et al. 1997), 

uses Coulombic electrostatic potential to reject models which are geometric fit but 

whose polar interactions are unfavourable charged. This simple electrostatic model 

improved the ranking of near-native model. Mandell et al. (Mandell et al. 2001) claims 

that FTDOCK is not very discriminative since all models which are energetically 

favourable are similarly treated (while they may have very different electrostatic 

magnitude). Therefore, they introduced DOT (Mandell et al. 2001), which integrates 

electrostatic using Poisson-Boltzmann equation within their FFT-based docking 

method. They found including electrostatic will only improve models whose binding is 

largely mediated by their electrostatic potentials (Mandell et al. 2001). Instead of 

calculating the interaction energy of each docked pose, MolFit (Heifetz et al. 2002) 

estimates the tendency of protein chains to form a energetically favourable complexes. 
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Therefore, the electrostatic areas of each protein are defined as positive, neutral, or 

negative patches. These patches are then integrated in the protein 3D representation to 

perform geometric-electrostatic FFT-based docking. They noticed that integration of 

electrostatic in scoring functions shows an increase in the number of correct solution, in 

comparison to using shape fit alone.  But this combination does not improve the ranking 

of the best solution. 

Sheinerman et al. have argued that since interactions take place in water to 

effectively incorporate electrostatic potentials into docking, desolvation must be taken 

into account (Sheinerman et al. 2000). Desolvation calculates the energy of breaking 

protein-water bonds and creating protein-protein and water-water bonds (also known as 

hydrophobic effect) (Nussinov & Schreiber 2010). Knowledge-based Potentials (also 

known as statistical potentials) have been successfully used in protein structure 

predictions. Therefore, various docking methods have introduced those desolvation 

models in their scoring function. These potentials measure the importance of an 

observed atom or residues contact in comparison to a reference (Nussinov & Schreiber 

2010).  In addition to electrostatic and desolvation, ICM-DISCO (Fernández-Recio et 

al. 2003; Fernández-Recio et al. 2002) and RosettaDock (Gray et al. 2003) combined 

hydrogen bonding in their MC-based approaches. A comparison to FTDOCK, which 

does not include desolvation, shows improvement in producing more native-like 

orientations (Fernández-Recio et al. 2003; Gray et al. 2003). However, Cheng et al. 

(Cheng et al. 2007) argued  that electrostatic and desolvation terms are the main 

contributors to the scoring models and hydrogen bonding has no impact.  

Therefore, focusing on desolvation terms, ZDOCK (Mintseris et al. 2007), one 

of the top performing methods as estimated by CAPRI (Hwang, Vreven, Pierce, et al. 

2010), introduced a new atomic statistical potential (atomic contact potentials (ACP)) 

based on contact propensities seen in transient protein complexes.  A potential is shown 

by a KxK interaction matrix (for K atom types) and measured as sum of K correlation 

functions. The main drawback of the ACP is that despite increasing accuracy it is 

computationally expensive (usually k=20). To improve the speed ZDOCK 3.0.2 took 

advantage of a 3D convolution library which allows for non-cubic rectangular grids 

representation which speeds up the FFT correlation computation (Pierce et al. 2011). 

Another approach toward optimising these potentials is to take advantage of Principle 
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Component Analysis (PCA). Sumikoshi et al. (Sumikoshi et al. 2005) simply applied 

PCA on cross terms of ACP and took the 2 most important eigenvectors as main 

contributors of energy. PIER FFT-based docking (Kozakov et al. 2006) also uses PCA 

along with a new knowledge-based potential scoring function, where they calculate the 

pairwise frequency of atom contacts in complexes in correspondence to the frequency of 

the contact in a large dataset of docked decoys (DARS). PCA of DARS cross terms 

allows the detection of the main energy contributors which are then used on FFT 

correlation. Comparison to ZDOCK, which at the time was one of the top performing 

docking methods, shows improvement by generally generating 50% more near-native 

solutions.  

Although these fast scoring functions have improved the generation of 

orientations close to near-native models, detection of near-native models among a large 

set of decoys remains a challenge. Therefore, many docking methods include a more 

sophisticated scoring function to re-rank models in a refinement stage (Tovchigrechko 

& Vakser 2005).  

2.4.1.2 Introduction of Flexibility in Rigid Docking 

Flexibility can be introduced in docking methods in three different manners 

(Bonvin 2006). 1) Smoothing the geometric criteria and allowing penetration in rigid 

docking (soft docking). 2) Performing multiple run of docking on ensembles of 

conformations (cross/ensemble docking). 3) Allowing explicit backbone or/and side-

chain flexibility during docking or refinement. Below we will discuss these in more 

details. 

2.4.1.2.1 Flexibility by Soft Docking 

The simplest way to introduce flexibility has been by softening the geometric 

criteria, which means to allow overlap between interacting surfaces.  Jiang and Kim 

(Jiang & Kim 1991) were the first people to exploit softness to accept minor 

conformational changes during the docking procedure. They used a grid cubic 

representation of the protein in which a docked model was produced by matching the 

surface cubes only rejecting the overlap of interior parts of protein.  
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Several geometric representations have been used to assist this overlap process. 

Vlaker (Vakser 1996) used a coarse grid representation in which only c-alpha atoms are 

used. In order to allow  more overlap between protein surfaces, HEX (Ritchie & Kemp 

2000) uses a grid-free version of FFT (grid-free spherical polar Fourier (SPF)) in which 

rotational correlation is calculated instead of translation (Ritchie 2008). In these 

approach spherical hydrophobic volumes of protein surfaces are compared by spherical 

harmonic functions (Halperin et al. 2002), which, apart from softening the docking SPF, 

increases speed since the search space is largely reduced. Therefore, HEX is much 

faster than FTDOCK (Halperin et al. 2002). HEX was further improved to FRODOCK 

(Garzon et al. 2009) which uses Fast Rotational Method instead of SPF. Allowing grid 

overlap using AND Boolean operator has been investigated in BIGGER (Palma et al. 

2000) which performs a real-space grid search with bit mapping that is optimised 

heuristically for speed. 

Van der Waals volumes have also been used to measure geometric fitness 

allowing overlaps in methods such as FTDOCK (Gabb et al. 1997) and RosettaDock 

(Gray et al. 2003). In FTDOCK instead of calculating charge-charge interactions, 

dispersed point charges of grids are used which also simulates side-chain movements. 

Instead of using volumes, Heifez and Eisenstein (Heifetz & Eisenstein 2003) considered 

overlap by trimming the protein’s side chain. This is achieved by a weighted protein 

surface representation in which side-chains contributes less to the complementarity 

score. Another approach to detect flexible side chains in a grid representation is to use 

MD  simulation of the protein (Ma et al. 2003).  Cells which are occupied by all MD 

conformations are kept for docking and other cells are assumed to be mobile. 

The main drawback of these soft docking approaches is that when full-atom 

representations of low-resolution models are created severe steric clashes are inevitable. 

In addition, they address only slight side-chain flexibility, which does not account for 

backbone movements.  

2.4.1.2.2 Flexibility by Ensemble Docking 

Flexibility can be introduced through rigid-body docking of ensemble of 

conformations (Bonvin 2006). These ensembles are taken from X-ray or NMR 

structures or generated using computational methods such as MD simulations, normal 
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modes and loop modelling. One way of docking ensembles is to dock them one by one 

(cross-docking) (Figure 2.10) but since it is computationally expensive methods such as 

mean-field approach have been used (Andrusier et al. 2008).  

Two studies of Smith et al.(Smith et al. 2005) and Grünberg et al. (Grünberg et 

al. 2004) investigated the use of ensembles docking by using MD simulations along 

with 3D-DOCK and HEX docking methods. They discovered an increase in the number 

of native like solutions in the pool of docked conformations. However, at the same time, 

scoring became more difficult since wrong solutions were given higher ranks.   

 

 

Figure 2.10: Ensemble Cross-docking strategy. Different ensembles of receptors and ligands are 

docked separately. Taken from (Bronowska 2013). 

2.4.1.2.3 Side-Chain and Back-bone Flexibility 

To introduce flexibility during docking or at refinement stage most methods use 

energy minimization (EM) techniques such as MD simulated annealing or MC 
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simulated annealing. Some of these methods not only deal with side-chain flexibility but 

also introduce back-bone flexibility.   

One of the early methods, ICM, introduced by Totrov and Abagyan (Totrov & 

Abagyan 1994) used Monte-Carlo simulated annealing to allow side-chain movements 

at the same time as docking. Their method was computationally expensive due to using 

atomic details of protein structures along with a force field scoring function. To 

improve the computational time, methods based on EM usually adopt two step 

approaches in which first rigid-body models are produced using a simplified protein 

model and a coarse force field, second, models at the local minimum are further refined 

using the detailed atomic representation of proteins (Janin 2013). Table 2.2 provides a 

general overview of different methods introducing flexibility on side chain and 

backbones. 

Table 2.2: side-chain and backbone flexibility in docking methods. 

Method Side-Chain flexibility 
Backbone 

Flexibility 
Stage 

RDOCK ABNR EM None Refinement 

ICM-DISCO biased probability MC None Refinement 

HADDOCK MD simulated annealing 
MD simulated 

annealing 
Refinement 

3D-Dock Rotamers Library + mean field None Refinement 

FiberDock Rotamers Library + ILP 
MC simulated 

annealing 
Refinement 

RosettaDock 
Rotamers Library + MC 

simulated annealing 

MC simulated 

annealing 
Refinement 

ATTRACT Multi-copy Loops + mean field Normal Modes EM During Docking 

FlexDock Hinge Bending Hinge Bending During Docking 

 

To introduce flexibility in ZDOCK docked models, RDOCK (Li et al. 2003) 

simply uses Adopted Basis Newton-Raphson (ABNR) energy minimisation to remove 

clashes and optimise polar and charge interactions. ICM-DISCO (Fernández-Recio et al. 

2003; Fernández-Recio et al. 2002) uses a MC rigid docking with fast-soft energy 

interaction function to rapidly produce docked decoys. Then, models are refined by 

changing the ligand’s side-chain torsion angles and optimising using biased probability 

MC to select the model with best side-chain energy. Comparison of ICM-DISCO to 
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FDOCK and BIGGER shows a better selection of native-like models. While these 

methods introduce flexibility only in ligand side-chains, HADDOCK (Dominguez et al. 

2003) takes into account both receptor and ligand side-chains flexibility. This happens 

at refinement stage using MD simulated annealing along with backbone flexibility. 

Recently a new method (SwarmDock) (Torchala et al. 2013) has proposed to use hybrid 

particle swarm optimisation to introduce flexibility into docking. 

Some methods use library of rotamers to introduce side chain movements. At 

refinement stage, 3D-Dock (Jackson et al. 1998; Carter et al. 2005)  creates a 

probability-based conformational matrix of side-chain movement using the library 

which is refined by mean field approach (MultiDock). More advanced approaches 

combine rotamer library with energy minimisation.  In FireDock (Andrusier et al. 2007) 

the optimal solution of rotamers are found by integer linear programming (ILP) 

technique. In FiberDock (Mashiach et al. 2010) this technique was combined with 

backbone flexibility using MC minimization. Alternatively, RosettaDock (Gray et al. 

2003) starts with a low-resolution rigid-body MC search using residues-based 

potentials. Then, side chains are added to docked poses using a library of rotamers. Both 

side-chain and backbones are then optimised using simulated annealing MC. 

Loops are another section of the proteins which goes under conformational 

changes upon binding. ATTRACT (Bastard et al. 2006; Zacharias 2003) tackles this 

issue by using multi-copies of loop conformations along with low-resolution protein 

representation to introduce side-chain and backbone flexibility during docking. Best 

models are then selected for further EM. A similar approach was introduced before 

(MC2) (Bastard et al. 2003) but since full atom representation was used, it proved 

computationally too expensive for high-throughput docking.  

Proteins parts such as domains can rotate around regions called hinge (Emekli et 

al. 2008). Hinges are usually formed by several residues and can go under large 

conformational changes while keeping the conformation of rotating parts unchanged. 

FlexDock (Schneidman-Duhovny et al. 2005a) uses hinge identification on one of the 

docked proteins to allow for flexibility. Therefore, these methods require a prior 

knowledge of the location of hinges (Wolfson et al. 2005) which can either be predicted 

(Emekli et al. 2008) or generated by 3D structural comparison among homologues 

structures (Bonvin 2006). Using hinges a protein can be cut-downed into several rigid 
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sections (subdomains). These subdomains of one interacting partner are separately 

docked (using PatchDock) onto the other protein. Then, using a graph assembly and 

docking score, subdomains are assembled to create a final complex. Hinge bending has 

shown to deal with large conformational changes.  

2.4.1.3 Data-Driven Docking 

One of the drawbacks of the rigid-docking methods is the search through the 

whole conformational space (Dominguez et al. 2003) which can produce models far 

from the possible solution since fast scoring functions not always being efficient: they 

may fail to distinguish near native from non-native poses. Therefore, to constrain the 

search space, the wealth of PPI experimental data such as NMR, Mass spectrometry and 

mutagenesis (Van Dijk, Boelens, et al. 2005) can be used to focus on conformations 

encountered in nature.  In data-driven docking those data are used to guide the docking 

itself, either by accounting for additional energy terms in the fast scoring function (Van 

Dijk, De Vries, et al. 2005), introducing anchor points (Fahmy & Wagner 2002) or up 

weighting specific residues in the FFT docking (Ben-Zeev et al. 2003; Schneider & 

Zacharias 2012).  

For example, in TreeDock (Fahmy & Wagner 2002) orientations are limited using 

anchor points selected by NMR chemical shift perturbation and mutagenesis data. 

Anchor points are pair of atoms on the protein chains which are always in contact 

(Schuck 2007). ZDOCK have used biological and structural information in literature 

along with homology search to detect important residues  (Zhang et al. 2005). They 

introduce “blocking” residues to avoid their appearance in the interface of 

conformational decoys by giving zero desolvation energy. HADDOCK have introduced 

NMR information to define ambiguous interaction restraints (AIRs) term along with 

electrostatic and van der Waals to score docking conformations. AIR boosts docking 

once atoms of interest come close together at the interface.  This strategy proved very 

successful since HADDOCK showed impressive results in CAPRI rounds 3-5 (Méndez 

et al. 2005) and 13-19 (De Vries et al. 2010) for protein-protein and protein-RNA 

docking, respectively. However, reliance on  experimental data means that when 

sufficient experimental data are not available, HADDOCK performed poorly in 

comparison to other state-of-the-art methods (De Vries & Bonvin 2011). However, this 
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limitation could be overcome by integrating interface predictors. HADDOCK 

introduced CPORT (HADDOCK-CPORT) (De Vries & Bonvin 2011) a consensus meta 

predictor based on WHISCY, PIER, ProMate, cons-PPISP, SPPIDER, and PINUP. 

CPORT prediction was added to AIR to drive the docking, which showed 72% increase 

of high quality models in the top 400 solutions in comparison to HADDOCK without 

CPORT. While HADDOCK has incorporated interface information into its energy 

scoring function, Kanamori et al (Kanamori et al. 2007) have used Evolutionary Trace 

(ET) of the residues calculated from homologues MSA to weight the degree of their 

shape complementarity. Some approaches have used data information as a pre-scan 

filter to limit the search space before performing docking (Schneidman-Duhovny et al. 

2003; Kowalsman & Eisenstein 2009). Li et al. (Li & Kihara 2012) used various 

predicted interfaces constraints and noticed that pre-processing highly depends on the 

accuracy of predicted residues. Therefore, they have integrated predicted interface into 

their docking procedure. Although one might argue that, interface predictions 

themselves contain false positives, it has been shown that (Zhou & Qin 2007) this does 

not affect docking performance. However, what can negatively affects the results is 

when at least part of the true interfaces are not covered by interface predictors (Zhou & 

Qin 2007). 

One of the main drawbacks of  using experimental data or interface predictions as a 

constraint before docking or for driving docking methods, is that docked conformations 

must meet at least one of the constraints (Schneider & Zacharias 2012). Therefore, these 

methods are highly sensitive to any incorrect data (De Vries et al. 2010), and may 

achieve poor performance. At the same time, studies confirm that the use of 

experimental data and interface information into docking methods results in more 

reliable structures (Van Dijk, Boelens, et al. 2005). A recent critical assessment (Shih & 

Hwang 2013) on data-driven docking have shown that success rate depending on the 

content of interface information used to drive docking. Residues contact information 

gives better docked performance than simply using the interface or non-interface state 

of residues. To reduce the sensitivity of docked poses to experimental data, methods 

have used energy-based scoring functions to first generate docked poses and then took 

advantage of experimental data to re-score docking conformations during the refinement 

stage.  
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2.4.1.4 Re-ranking Docking Conformations 

As discussed above, the most recent rigid-docking strategies are able to produce 

several native like conformations (Ritchie 2008) and the main difficulty lies in detection 

of these models (Lensink & Wodak 2010). Therefore, identifying the native pose by re-

ranking docking poses is an active field of research (Li et al. 2003; Pierce & Weng 

2007; Vreven et al. 2011). Since comparative studies (Lensink et al. 2007; Janin et al. 

2003) have shown that energy-based scoring functions are error-prone, knowledge-

based (statistical) methods have been proposed. Here we are focusing on scoring 

function used at refinement stage to re-rank docking poses.   

In general the idea of knowledge-based functions is to gain general statistic and 

knowledge of the protein binding sites properties in order to distinguish correct binding 

sites in a set of docked decoys. Knowledge-based functions can be broadly divide into 

two groups: 1) knowledge-based Potential Functions: which use a databases (Keskin et 

al. 2004) such as PDB (Berman et al. 2000) or Dockground (Douguet et al. 2006) to 

learn about the potentials involved between interacting interfaces. These potentials can 

be atom-based or residues-based/coarse-grained. As discussed above, since atom-based 

potentials are vulnerable to conformational changes and to account for a faster 

processing speed, coarse-grained potentials are mainly used.  Methods have also taken 

advantage of Machine Learning techniques to learn about potentials using larger 

number of energy terms.  2) Interface-based Functions: experimental data or predicted 

interfaces are the two main data used in these methods.  

Moreover, methods have used the combination of these functions to perform 

predictions. For example, Interface -based Functions may include potential terms in 

their scoring functions. 

2.4.1.4.1 Knowledge-based Potential Functions 

Knowledge-based potentials have been successfully used in predicting protein 

structures (Sippl 1995). These methods measure the free energy of the protein by 

sampling the surface potential energy (Bernauer et al. 2007).  

Different atomic knowledge-based potentials have been used to re-rank ZDOCK 

decoys, all of them producing better results than ZDOCK alone.  ZRANK (Pierce & 

Weng 2007) proposed the use of a combination of three atom-based terms, i.e. van der 
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Waals, electrostatics and desolvation (atomic contact potentials (ACP)). Using docking 

benchmark 2.0, Pierce et al. (De Vries & Bonvin 2011) applied ZRANK to rank 

complexes generated by ZDOCK and managed to find a hit among the top 100 solutions 

for 83% of the cases containing a near-native pose. Another atom-based function 

(CFPScore) uses (Liu et al. 2006) a combination of packing density, contact size, atom-

based potential of mean force (PMFScore) and geometric complementarily to re-rank 

models produced by ZDOCK. This score with an error rate of 5% can detect the true 

biological interface from crystal artefacts. Better result was achieved by RDOCK (Li et 

al. 2003) which performs energy minimisation followed by electrostatics and 

desolvation scoring functions to re-rank ZDOCK models. Usage of minimisation and 

generation of local minima models before re-ranking were shown to improve results 

(Viswanath et al. 2012). Similar approach was also used in PyDock (Cheng et al. 2007) 

which used electrostatic and atom-based desolvation to re-rank FTDOCK and ZDOCK 

conformations. Their investigation showed that these two terms are the main 

contribution in detecting good quality models. While PyDock takes into account both 

electrostatic and desolvation, GB-rerank uses desolvation energy alone to re-rank 

F2DOCK top 2000 models. F2DOCK (Chowdhury et al. 2013) is a FFT based docking 

method using electrostatic, interface propensity and hydrophobicity fast scoring 

function. Comparisons to ZDOCK 3.0.2 (Pierce et al. 2011) on Docking benchmark 4.0 

shows that their performance are complementary to each other which suggests better 

results can be achieved by combining the results of these two docking tools 

(Chowdhury et al. 2013). 

Atom-base scoring functions are vulnerable to any error or conformation change 

through the docking process. In addition, most docking models use coarse-grain 

representation of complexes to account for speed and flexibility. For example, PyDock 

speed was increased in pyDockCG (Solernou & Fernandez-Recio 2011) where coarse-

grained potential was used instead of full-atom. On the other hand, ranking ZDOCK 

models using DFIRE - an atom-based statistical energy function (Zhang et al. 2005) - 

only produced good ranks for near-native models without atomic clashes. As a 

consequence, residue-based/coarse-grain scoring functions were designed. 3D-Dock 

(Jackson et al. 1998; Carter et al. 2005) uses RPScore (Residue level Pair potential 

Score) which relies on empirically residue pair potential derived from statistical analysis 
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of protein-protein interfaces. Murphy et al. (Murphy et al. 2003) combined atom-based 

ACP and residue-based RPScore to re-rank models. They concluded that those scores 

are complementary since RPScore creates more hits, while ACP gives higher rank to 

near-native models. Therefore, integrating residue- and atom- based potentials, an 

extension of ZRANK, IRAD (Integration of Residue- and Atom-based potentials for 

Docking) (Vreven et al. 2011), was introduced. Since these potentials can handle 

conformational changes, IRAD outperforms ZRANK when dealing with complexes of 

medium docking difficulty (Vreven et al. 2011).  While IRAD combined three different 

residue potentials (H. Lu et al. 2003; Glaser et al. 2001; Tobi & Bahar 2006) 

DOCK/PIERR (Viswanath et al. 2012) used PIE (Ravikant & Elber 2010) residue 

potential along with atomic potential to re-rank rigid docking poses with minimised 

side-chain. Re-ranking performed by a combined atomic+residue potential scoring 

function performs better than ranking produced by each term separately. DOCK/PIERR 

compares favourably to leading docking methods such as ZDOCK+ZRANK, Cluspro, 

and PATCHDOCK+FIBERDOCK. 

Practically, coarse-grained representations have been used to account for speed 

in docking methods. However, better accuracy requires to consider high-order 

interactions (Johansson & Hamelryck 2013). The above mentioned potentials are 

mainly based on pair-wise interface contacts (two-body) where nearest neighbour or 

contact residues are defined by arbitrary distance criteria (Krishnamoorthy & Tropsha 

2003). These functions leave out multi-body  and long-range interactions which are the 

contributors to the stability of protein complexes (Khashan et al. 2012).  Therefore, 

scoring functions taking into account three or four-body statistical potentials have been 

formulated as probability tables (Khashan et al. 2012; Krishnamoorthy & Tropsha 2003; 

Feng et al. 2007; Li & Liang 2005; Ngan et al. 2006) similarly to previous pair-wise 

potentials (Yan et al. 2013; Ravikant & Elber 2010; Mintseris et al. 2007; Zhang et al. 

1997).   

DECK (Liu & Vakser 2011) and ITScore-PP (Huang & Zou 2008) two coarse 

grained, multi-body knowledge-based distance-dependent scoring functions have been 

developed for ranking docked protein complexes. One of the main difficulties in 

knowledge-based methods is to introduce a reference state.  To address this problem, 

DECK uses five different reference states from a set of non-native matches (decoys), 
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and ITScore-PP performs iterations on 851 PDB protein complexes. ITScore-PP has 

relied on Delaunay tessellation representations (Krishnamoorthy & Tropsha 2003; 

Huang & Zou 2008) while DECK uses atomic environment where all interactions are 

taken into account (Summa et al. 2005) (an schematic example in Figure 2.11). 

Tessellation which is based on amino acid representation has been shown to provide 

valuable structural information such as molecular recognition (Bernauer et al. 2007). 

Both scores improve the near-native hits in comparison to ZDOCK and in the CAPRI 

ranking competition for target 32 (Lensink & Wodak 2010) DECK has shown to be the 

best scorer by, ranking 2 acceptable models in 3
rd

 and 5
th

 position out of 10.   

 

Figure 2.11: A schematic representation of Delaunay tessellation representations of protein surface 

on the left. On the right is an example of 2-body scoring (left in the table) and 3-body scoring (right 

in the table) of residue contacts. Taken from (Andreani et al. 2013). 

Scoring functions have also been used alongside clustering of the docked poses 

at refinement stage. Although clustering itself is not a scoring function, it was shown 

that clustering of low energy conformations docking provides a simple mechanism for 

detection of near-native orientation (Ritchie 2008).  For example, Cluspro (Comeau et 

al. 2004) works by initially calculating 70,000 docking models using DOT docking 

program (Comeau et al. 2004). As refinement stage, 1000 best models are selected 

using a statistical desolvation and electrostatic energy function. Cluspro performs 

additional clustering to select models with the most neighbours within a 9 Å C-alpha 

RMSD cut-off and scores them based on their cluster size. Recent improvements to 

Cluspro (Kozakov et al. 2010) have been achieved by first generating 1000 best energy 

models using PIER. Then these models are clustered and the 30 largest clusters are kept 

for stability analysis and structural refinement using Monte Carlo simulation and 

medium range optimization method, respectively. Using this method in rounds 13–19 of 

CAPRI, Cluspro outperformed 53 of 63 participating groups. Unlike Cluspro, in 

F2DOCK (Chowdhury et al. 2013) clustering takes place before scoring to penalise a 
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pose if a similar pose exists with a better score. Then knowledge-based potentials based 

on Lennard-Jones potential, the number of steric clashes, interface area, interface 

propensity and residue-residue contact preferences are used to re-score the top 2000 

poses.  

The aim of these scores is to detect the near-native docking models which are 

distinguishable by low binding affinity. These scores calculate the free energy of the 

complexes which relates to the binding affinity (Shen & Sali 2006). However, a 

comparison study (Kastritis & Bonvin 2010) of knowledge-based potentials in re-

scoring docking conformations has shown poor correlation to binding affinity. 

Therefore, improvements of current scoring functions and possibility creating consensus 

and learning functions are required for describing binding affinities (Kastritis & Bonvin 

2010).  

2.4.1.4.2 Statistical and Machine Learning Functions 

Since experimentally determined complexes provide useful information, 

statistical and machine learning techniques have been used to learn from available 3D 

structures. These techniques can handle large number of independent sets of input data 

to characterise protein binding sites.  

Some approaches have used statistical learning to characterise binding sites 

based on their properties in a complex. Bernauer et al.  (Bernauer et al. 2007) have used 

low-resolution Voronoi representation of protein surfaces and generated 84 parameters 

describing surface geometry and physico-chemical properties. These data was used by a 

genetic algorithm to create an efficient scoring function that optimises the area under 

the curve. For 4 out of 5 CAPRI targets Bernauer et al. achieved better ranking than 

HADDOCK. To further improve their work, Voronoi representation was used with an 

optimised scoring function using probabilistic multi-classifiers adaptation (Bourquard et 

al. 2011). In the CAPRI ranking competition, at least one acceptable or better solution 

was found within the top 10 models for 4 out of 8 targets. 

Recently, Othersen et al. (Othersen et al. 2012) have used Mutual Information 

(MI) to select structural features which discriminate between near and far-native 

conformations. Structural features in their study can be grouped into two main 

categories: (i) pairwise interface contacts of amino acids, and (ii) size of the solvent-
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accessible surface area. They have proven that MI is dimensionless and can be applied 

to a wide variety of structural features and different size datasets. Experiments on 

Dockground (Douguet et al. 2006) dataset using a fivefold cross validation on 11 

structural features showed they could detect correct or near-native structure in 41 cases 

out of 60. 

Other approaches have used supervised machine learning, i.e. SVM, trained by various 

properties. But instead of just classifying models as native or non-native they have used 

probabilistic SVM which allows them to generate a ranking of docked poses. This can 

be achieved by the position of a complex relative to a hyperplane of the SVM which 

estimates the probability of that complex to be native or not. Mertin et al. (Martin & 

Schomburg 2008) trains a probabilistic SVM from proteins in DBMK 2.0 (Mintseris et 

al. 2005)using properties such as evolutionary relationship, interface propensities, gap 

volume, buried surface area, residue- and atom-based pair potentials on residue and 

atom level. Re-ranking using this SVM-based score has shown better performance than 

knowledge-based potentials of ACP and RPScores. Being different in the training 

properties,  PROCOS (Fink et al. 2011) uses a probabilistic SVM which combines van 

der Waals and electrostatic energies and knowledge based pair potentials. Comparison 

to ZRANK shows more near-native hits are detected within the top 10 models. 

Unlike PROCOS and Mertin et al.’s approach which are all supervised, Zhoe et 

al. (Zhao et al. 2011) proposed a semi-supervised (TSVM) along with a supervised 

(SVM)  method trained using interface features generated from interaction interfaces of 

protein complexes. The features can be grouped into (i) residue type statistics, (ii) 

surface patch parameters, (iii) secondary structure statistics, and (iv) number of 

contacts. They generated docking conformations using PatchDock (Duhovny et al. 

2002)  and RosettaDock (Gray et al. 2003)  for 124 proteins for docking benchmark 3.0 

(Hwang et al. 2008) and performed two test. First, they classified near-native and non-

native structures by leave-one-out cross-validation experiments which showed that 

SVM and TSVM performed similarly with accuracies around 80%respectively. Second, 

they tested the ability of SVM/TSVM to re-rank docking conformations and compared 

it with the original ranking provided by the docking methods. They managed to improve 

the rank of the hit-pose for PatchDock in 22 targets with an average increase in rank of 

3 and 5 positions for SVM and TSVM, respectively.  These results suggests that SVM 
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and TSVM are good classifiers of native and non-native structures but do not provide 

significant improvement in re-ranking models. 

2.4.1.4.3 Knowledge of Predicted Interfaces 

As discussed in data-driven docking procedures, usage of experimental data in 

pre-filtering and during docking causes limitations. Therefore, methods were developed 

to exploit those data after docking, i.e. for ranking docking models (Pons et al. 2010; 

Schneidman-Duhovny et al. 2012). Although these techniques improve the detection of 

near-native, they are limited to availability of experimental data. Therefore, in their 

absence, prediction of interface residues (De Vries & Bonvin 2011; Li & Kihara 2012) 

may be a solution. As discussed in the data-driven docking, interface residues 

information can be exploited in two complementary ways (Qin & Zhou 2007a) for 

providing better rankings of docking. They can be applied as pre-filtering (Korkin et al. 

2006), to narrow the initial search space of the docking models, or alternatively as post-

filtering, for re-ranking docking conformations by calculating the similarity between the 

interfaces of the docked models and the predicted ones. On one hand, pre-filtering limits 

the search space from the start but is less practical to use since the constraint should be 

imposed on the algorithms of the docking methods (Qin & Zhou 2007a). On the other 

hand, post-filtering is more practical since it can be combined with other scores (such as 

energy or knowledge based) to re-rank all generated models from several docking 

algorithms.  

Computationally predicted protein interfaces have significant impact on 

exploration of interactomes (Zhang et al. 2012; Mosca et al. 2012; Vakser 2013). 

Therefore, many methods have investigated the use of binding site predictions (alone or 

in combination with knowledge-based potentials) to score docking conformations. 

Further insight into the value of using interface knowledge was gain when Zhoe et al. 

(Zhou & Qin 2007) performed a comparison between ZDOCK rankings and those 

methods taking advantage of simulated interface predictions where a fraction of real 

interfaces were substituted randomly by non-interface residues. Experiments show that 

knowledge of a few correct interface residues – up to 60% of the interface substitution – 

is sufficient to outperform ZDOCK rankings. In spite of those encouraging results, very 
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few of the interface prediction methods introduced in the previous section have been 

used to rank docking models.  

 As discussed in Protein Interface Prediction section, residues are more 

conserved and can be detected by analysing the evolutionary rates among protein 

families. Therefore, conservation score have been integrated into re-scoring function. 

Trees et al. (Tress et al. 2005) used evolutionary trace (ET) to re-rank docking 

conformations of GRAMMX and HEX. 3 acceptable models were detected for 7 

CAPRI targets of CAPRI round 3-5 (Méndez et al. 2005), which was a significant result 

for a predictor based on sequence only information. Later on,  GRAMM-X 

(Tovchigrechko & Vakser 2005) included the degree of interface residues evolutionary 

conservation along with knowledge-based potentials to re-rank models at refinement 

stage which resulted in  2 medium accuracy predictions of CAPRI round 5. Heuser et al. 

(Heuser et al. 2005) investigated the conservation of a smaller set of residues ( Phe, 

Met, and Trp and their polar neighbour residues) to detect binding site and re-rank 

models. While these methods use a set of conserved residues, DockRank (Xue et al. 

n.d.; Xue et al. 2010)  investigated the use of PS-HomPPI (Xue et al. 2011) in ranking 

docking conformations since PS-HomPPI was shown to be one of the best performing 

evolutionary-based predictors using MSA of QPs. DockRank was tested on docking 

models generated by Cluspro for docking benchmark 3.0 and comparing its rankings 

with those provided by Cluspro shows that in 61 cases out of 64, DockRank identifies 

better models. While these methods have been looking at the evolutionary rate of a site 

in a MSA, other methods use evolutionary information generated from a residue pair in 

complex. SCOTCH (Madaoui & Guerois 2008) have investigated mutations of the 

protein complex interfaces which disrupt the physicochemical complementarity of 

protein interfaces in order to detect native-like contacts. Compared with mutation scores 

which calculate conservation score of each protein individually (evolutionary rate of a 

position in a MSA) (Pazos et al. 1997; Afonnikov et al. 2001), SCOTCH shows 

improvement in re-ranking FTDOCK decoys. A more sophisticated score, InterEvScore 

(Andreani et al. 2013), takes advantage of evolutionary conservation based on interface 

co-evolution which is combined with two- and three coarse-grained statistical potentials 

to rank docked models. Evolutionary conservation was not only based on MSA but also 

considered interface co-evolution among contacting residues. InterEvScore showed 
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significant improvement in scoring docking models in comparison to ZDOCK and 

ZRANK. This can be explained by complementary information gained from both 

conservation and two- and three statistical potentials. A totally different approach of 

generating conserved residues has been used by CONSRANK (Oliva et al. 2013). In 

this approach the two protein chains are first docked and then conservation of inter-

residue contacts is investigated among the decoys ensemble. The conservation is simply 

based on the frequency of contacts at each site among the ensemble decoys. Then, these 

decoys are re-scored where higher ranks are given to decoys which represent the most 

frequently observed contacts at their binding sites. The reason behind CONSRANK is 

that docking algorithms are capable of generating a large numbers of near-native 

docking poses which can be used as a guide toward the correct pose. Comparisons to 

scorer groups involved in CAPRI (Lensink & Wodak 2010), CONSRANK improves the 

fraction of near-native hits in the top 10 models by 9.9. 

With the increase in the number of 3D structures new paradigm of interface 

predictors have been used for ranking docking models.  Gottschalk et al. (Gottschalk et 

al. 2004) produced a pivotal study extending their interface prediction method,  Promate 

(Neuvirth et al. 2004) (see Protein-Protein Interface Prediction section), to re-ranking 

docking models. By calculating the tightness of fit of the two docked proteins against 

the predicted binding sites, they obtained a near-native solution in 77% of the cases. 

Similarly, Qin et al. (Qin & Zhou 2007a) showed that usage of cons-PPISP Interface 

prediction improves the ranking for 8 out of 20 CAPRI targets. These results show that 

true positives in interface predictions with a low rate of false positives are capable of 

providing reasonable rankings. Therefore PINUP with better performance than Promate 

and cons-PPISP (Zhou & Qin 2007), (see Protein-Protein Interface Prediction section), 

was used to re-ranking Z-DOCK and Rosetta decoys producing a significant increase in 

detection of near-native conformations (Liang et al. 2009). Since combinations of 

interface predictors improves individual ones in MetaPPI, Huang et al. (Huang & 

Schroeder 2008) exploited the use of MetaPPI predictor for ranking BDOCK docking 

models. As discussed in the Protein Interface Prediction section MetaPPI combines 

predictions of Promate, PPI-Pred, PPISP, PINUP, and SPPIDER. The re-scoring results 

on a benchmark of 63 complexes showed that for 16 out of 20 cases of enzyme-
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inhibitors Huang et al. achieved hits with low RMSD compared to the native structure 

while the results were worse for non enzyme-inhibitors.  

The above methods model interacting residues’ patterns using two-body (or 

three or four-body) terms while multi-residue interactions are the ones which contribute 

to the stability of protein complexes. Therefore, to overcome the limitation of the 

number of terms for representing the pattern of interacting residues Khashan et al. 

(Khashan et al. 2012) proposed SPIDER, which relies on the frequency of interaction 

patterns taking place between interfacial residues of protein complexes.  This relied on 

the creation of a library of contacts where each protein complex (here Dockground is 

used) was converted into a graph of residue contacts and then using sub graph mining 

methods, common interfacial patterns were generated. The score of a docking model 

depends on its interface geometric similarity to the patterns in the library and the 

frequency of that pattern. Although, SPIDER was shown to outperform ZRANK and 

was ranked 6 out of 28 in CAPRI round 21, InterEvScore performed better. The main 

reason is that statistics on interface contact are limited in the multi-body docking 

potentials, whereas InterEvScore is based on a reliable two- and three-body interaction 

statistics database (InterEvol (Faure et al. 2012)). 

2.4.2 Template-based Docking 

Although many improvements have been achieved using template free docking 

approaches, scoring functions are still not good enough to detect near-native models 

from a pool of false positives. Moreover, increase in the size of proteins negatively 

affects the computational time of docking methods (Pons et al. 2010). Therefore, these 

docking methods are not suitable for large-scale PPI. With the increases in the number 

of experimentally determined protein-protein structures, a new trend of docking 

methods emerged. These methods take advantage of the 3D structures available in PDB 

as a template to generalise the model of interactions between two proteins. In addition, 

these methods can predict whether two protein chains interact or not (Ogmen et al. 

2005). For detecting templates the search strategy of those template-based methods can 

be based on 1) sequence similarity (Aloy et al. 2003; Kundrotas et al. 2008; Launay & 

Simonson 2008)  2) Threading sequence on structure (Lu et al. 2002; Chen & Skolnick 
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2008; Mukherjee & Zhang 2011) or 3) structural alignments either locally or globally 

(Zhang et al. 2012; Tuncbag et al. 2012; Günther et al. 2007).  

Template-based docking started  with the pivotal work of Aloy et al. (Aloy & 

Russell 2002) using the homology concept. Using a known 3D complex and the 

homologous sequences of each interacting protein, putative protein pairs are scored 

using empirical potentials derived from the 3D complex. This method provides a 

mechanism for deciphering whole interaction networks but can only be used when 

template and query sequences are from the same Pfam family. This method combined 

with experimental techniques, was used to decipher the domain–domain complexes in 

Yeast (Aloy et al. 2004). In the same line, Davis et al. (Davis et al. 2006) predicted the 

higher-order complexes of protein in Saccharomyces cerevisiae using the sequence 

similarity to structurally known complexes. This method for the first time introduced 

higher-order complexes prediction based on structural templates. 

Intrinsic structural information has been combined with sequence alignment 

similarities, in order to detect templates. HOMBACOP uses profile-to-profile alignment 

combined with structural information of the template interfacial residues and query 

protein predicted residues (Kundrotas et al. 2008). Even for query proteins of which 

highly homologous templates does not exist, reasonable models can be produced using 

this profile-to-profile alignment (Kundrotas et al. 2008). Similarly, Launay and 

Simonson  (Launay & Simonson 2008) have improved Needleman–Wunsch alignment 

of target proteins on templates by including solvent accessibility of interfaces residues. 

Then they added energy calculation to select the best model. While these methods look 

at sequence homology to detect templates, KBDOCK (Ghoorah et al. 2011) creates a 

3D domain-domain interaction database in which for each Pfam domain family 

homologous complexes are structurally aligned and binding sites are analysed. Using 

KBDOCK, complex templates were detected for 45 out of 73 complexes and, for 24 

complexes, templates were found for only one of the chains. It is suggested that this 

information can be used to guide template-free docking.   

The main problem with the above mentioned methods is that they are limited to 

available homologous sequence and structure. These methods can only account for 

~20% of the know PPI (Kundrotas et al. 2008). Therefore, methods have gone beyond 

homology, using two different techniques for finding templates: usage of threading of 
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protein sequences on template structures, and usage of the 3D structures of the query 

proteins to search for templates with similar structure either globally or at interface 

level.  

Single threading has been widely used to predict protein 3D structure, in which 

the sequence of query protein is aligned on a library of folds and the best fit hit is 

selected to model the query protein structure. Since the physical principals of protein 

folding and binding are similar, PPI methods have adopted threading (Vakser 2013). 

MULTIPROSPECTOR (Lu et al. 2002) (Figure 2.12) has extended single threading to 

multimer threading, in which the sequence of the target protein chains are separately 

threaded on a library of protein-protein complexes. A template is selected by not only 

how well both chains fit on the template but also based on statistical interfacial pair 

potentials and stability of the target complex. This method allows exploiting more 

distantly related protein templates and has been used to predict Saccharomyces 

cerevisiaeS protein interaction network in (L. Lu et al. 2003). In these methods, since 

the query chains are aligned separately on the template, the cooperative relationship 

between chains such as burial residues, conformational changes and binding specificity 

are not taken to account during the threading and alignment procedure. To deal with this 

issues, following a threading step, M-TASSER (Chen & Skolnick 2008) performs 

backbone and orientation refinements plus energy calculations. Instead of using a 

refinement stage, COTH (Mukherjee & Zhang 2011) uses a co-threading technique in 

which both protein chains are simultaneously aligned on protein-protein templates. 

Methods based on threading generate models using the sequence of the target protein 

while docking methods are based on the knowledge of the protein structure. Therefore, 

methods have used protein complexes with similar structure to the QP chains as 

templates to model the QP complex. This similarity can be either global or local at 

interface level, but in both cases methods using structural similarities cover more 

predictions than threading methods (Vreven et al. n.d.).  
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Figure 2.12: MULTIPROSPECTOR principle. First each chain is separately threaded on dimers 

available in a library of templates. Once both chains are threaded on a dimer, statistical interfacial 

pair potentials are used to evaluate the energy of that dimer complex. Taken from (Lu et al. 2002). 

Since similar interface architectures have been detected among proteins 

displaying different functions and structures (Keskin & Nussinov 2007), it has been 

proposed Template-based docking using interface similarities but ignoring global 

sequence and structure similarities. Moreover, since accuracy of high-throughput 

modelling relies on correctly modelling the binding sites (Kundrotas & Vakser 2010), it 

could be shown that complexes created by the alignment of interfaces on templates are 

more accurate than those relying on the whole structure (Sinha et al. 2010).  Based on 

these results, ISEARCH (Günther et al. 2007) uses surface patches of target proteins to 

search in a patch-based library of domain-domain interactions. Once a hit is found target 

interfaces are aligned onto the template. To impose more accurate detection of the 

correct template interface, PRISM (Tuncbag et al. 2012) (Figure 2.13) combined 

geometric similarities with evolutionary conserved residues (hotspots) (Ogmen et al. 

2005). The target surface is structurally aligned on the library of protein-protein 

interfaces to detect the best aligned templates. In this alignment at least one hot-spot 
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residue of template should be aligned with a target residue. Once templates are detected, 

monomer chains are transformed onto the template and FireDock (Mashiach et al. 2010) 

is used to resolve clashes and rank putative models based on energy. This is followed by 

a refinement stage to add flexibility to side-chain and backbone. This stage makes 

PRISM different from other template-based methods which only use rigid-body 

alignment. PRISM is computational less expensive in comparison to ZDOCK and 

PatchDock since it can remove false-positives by using structural templates (Tuncbag et 

al. 2011). As a consequence, PRISM has been used for constructing signalling pathways 

(Kuzu et al. 2012).  

 

Figure 2.13: PRISM pipeline for template-based docking using interface similarities.  Step 0: a 

Template Dataset is created. A) Available complexes are retrieved and similar structures are 

clustered together, B) one representative of the clusters is selected and the interfaces are detected, 

and C) only the interfaces are stored in the dataset. Step 1: The surfaces of the target proteins are 

identified.Step2:Targetsurfacesarestructurallyalignedonthetemplate’sinterfacesandpossible

new complexes are evaluated. Step 3: FireDock is used to remove clashes. Step 4: backbone and 

side-chain flexibilities are added. Taken from (Kuzu et al. 2012).  

A recent method, PrePPI (Zhang et al. 2012), has deciphered ~2 million PPIs 

including ~60 000 yeast PPIs and ~370 000 human PPIs(deposited in PrePPI database 
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(Zhang et al. 2013)). The two main highlights of this method are: (i) usage of structural 

neighbours: they can be found for most proteins in PDB and even remote ones have 

shown similar binding properties (Q. C. Zhang et al. 2010). (ii) usage of homology 

modelling for the input targets whose X-ray model is not available to cover more 

predictions. The pipeline of PrePPI (Figure 2.14), which has shown to be as accurate as 

experimental methods, is described below. First, PrePPI searches for close or remote 

structural neighbours using experimental or homology models of the input targets.  

Once a complex is found which contains chains from the pool of structural neighbours 

on both sides, that complex is taken as template. After aligning the target chains on the 

template, five scores are generated and combined in a Bayesian framework to predict 

the likelihood of two protein interacting. These five scores are based on structural 

features generated from global and interfacial geometric fitness of targets on templates 

plus interface properties (such as evolutionary conservation, residue type and statistical 

probability of being in interface) generated from known PPIs.  

There are three main reasons for the accuracy of this method (Zhang et al. 2012). 

1) Considering both homology-modelling and structural neighbours allows the 

exploitation of larger number of models. 2) Scoring is efficient and at the same time has 

a high discriminative power on closely related family members. 3) Bayesian framework 

can perform a reliable prediction combining even with weak and independent 

interaction signals. To account for speed, PrePPI performs a structure-based sequence 

alignment of targets on the template. Therefore, this method does not provide any 3D 

structure of the new complex.  

 

Figure 2.14: PrePPI Pipeline for large-scale template-based docking. PrePPI searches for close or 

remote structural neighbours of the input targets.  Once a complex containing both sides is found, 

that complex is taken as template. Target chains are aligned on template and five scores are 

generated and combined in a Bayesian framework to predict the likelihood of two protein 

interacting.  
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As demonstrated above, the accuracy of Template-based docking depends on the 

availability of templates. A recent large-scale study (Kundrotas & Vakser 2010) 

confirmed that for almost all PPI a template is available in PDB, where one-third are of 

good quality (interface RMSD<5 Å). Also, since a library of interfaces is close to 

complete (Gao & Skolnick 2010), a representative binding site can be found for any 

given interface (Zhang et al. 2012; Q. C. Zhang et al. 2010). Therefore, with the 

availability of templates, low-resolution template-based methods are effectively used for 

large-scale PPI. It should be highlighted that template-based docking for prediction of 

new PPI is possible only when the structure of the individual components are available 

or if they can be generated by homology modelling (Kundrotas et al. 2012; Zhang et al. 

2012). To summarise, Figure 2.15 shows the results for five genomes which have the 

largest known number of PPIs (Vakser 2013). The red sections represent protein 

complexes whose X-ray is available. Green section shows complexes in which protein 

sequences are used as templates to generate new complexes from the X-ray ones. Blue 

represents complexes which are generated by structural templates (also including ones 

which the individual chain can be modelled by homology). For 99% of the PPIs where 

the structures of the individual components (or their models built by homology 

modelling) were available, a structural complex template was available in PDB. As it is 

shown, using structural templates a larger set of PPI can be modelled in comparison to 

using sequences as templates. ‘no template’ indicates that structures were not available 

for both of the individual components (Vakser 2013).   
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Figure 2.15: PPI for five genomes. Red represents complexes with a x-ray structure. Green refers to 

complexes modelled by sequence templates. Blue are complexes which are modelled by a template 

structure. In this group either the x-ray of individual proteins are use if available or homology 

modelling is used.  Taken from (Vakser 2013). 

2.4.3 Conclusion 

With the increase in experimentally determined structures and the emergence of 

template-based docking , genome-wide PPI deciphering can happen in the foreseeable 

future (Vakser 2013). Since these high-throughput methods are low-resolution, “The 

first credible model of a cell will be low resolution” (Vakser 2013). Eventually, high 

resolution modelling should be used to get a clearer picture of what is happening inside 

the cell (Vakser 2013). 

Although template-based docking has enabled large scale PPI prediction, 

template-free docking still remains highly important. First, many proteins in the cell do 

not correspond to the energetically stable crystallised  templates (Vakser 2013). Second, 

although there has been an increase in the number of templates (Kundrotas et al. 2012), 

still some PPI lack templates or the quality of the template is really low (Movshovitz-

Attias et al. 2010).  Third, free-docking approaches with their refinement stage have 

made it possible to generate high resolution structures (Vakser 2013) which are 

important for understanding the molecular mechanism of protein contacts. Moreover, 
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results obtained from template-based and template-free docking are complementary and 

combining their docked models  has shown to improve the detection of near-native 

models (Vreven et al. n.d.). This shows that both methods have their own strength and 

limitations. 

As discussed above, template-free docking methods predicting protein 

complexes compete against each other in CAPRI competitions (Janin et al. 2003). A 

comparison of these methods in the latest CAPRI rounds 22-27 is displayed in Table 

2.3. These rounds consist of 10 Targets, T46 to T58 which T55 and T56 were only for 

scorer and T52 was cancelled. ‘Stars’ are given based on the quality of the predicted 

complex in comparison to the native complex: * (acceptable), ** (medium), and *** 

(high) whereas no star means incorrect prediction. Ranks are given to each group based 

on their overall performance. In total more than 40 groups participated, here we show 

the results for the top 12 ranked groups. Based on this comparison Cluspro (Comeau et 

al. 2004; Kozakov et al. 2006), which was ranked 9
th,

, is the best performing docking 

server. Therefore, in this thesis we have used Cluspro which is also a really fast docking 

method to generate docked poses. It should be noted that our work in this thesis is not 

limited to Cluspro and can be used to re-rank any docked model regardless of the tool 

used to generate them. 

HADDOCK has also ranked as the second best server. The first ranked group 

(Bonvin) is composed of the developers of HADDOCK, which shows that the use of 

HADDOCK along with human interpretation of docked models can significantly 

improve docked model prediction. 
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Table 2.3: Template-free docking performance in CAPRI rounds 22-27. 

R
a

n
k

 

Group T46 T47 T48 T49 T50 T51 T53 T54 T57 T58 
Summary: #Targets / 

*** + ** + * 

1 Bonvin * *** * * ** * ** 
 

** * 9 / 1 *** + 3 ** + 5 * 

2 Bates 
 

** * * * * * 
 

* ** 8 / 2 ** + 6 * 

3 Vakser 
 

*** * * * 
  

* * * 7 / 1 *** + 6 * 

4 Vajda 
 

*** ** * ** 
 

*** 
 

** 
 

6 / 2 *** + 3 ** +  1 * 

5 
Fernandez-

Recio  
*** * * ** 

 
** 

  
** 6 / 1 *** + 3 ** + 2 * 

5 Shen 
 

*** ** ** * 
 

** * 
  

6 / 1 *** + 3 ** + 2 * 

7 Zou 
 

*** ** * * 
   

** * 6 / 1 *** + 2 ** + 3 * 

8 Zacharias 
 

*** * * * 
 

* 
 

* 
 

6 / 1 *** + 5 * 

9 ClusPro 
 

** ** * ** 
 

** 
 

* 
 

6 / 4 ** + 2 * 

10 Eisenstein 
 

*** ** * ** 
 

* 
   

5 / 1 *** + 2 ** + 2 * 

10 Grudinin 
 

*** 
  

** 
 

* 
 

* ** 5 / 1 *** + 2 ** + 2 * 

12 Gray 
 

*** 
    

* 
 

* ** 4 / 1 *** + 1 ** + 2 * 

12 HADDOCK * *** 
 

* 
    

** 
 

4 / 1 *** + 1 ** + 2 * 

12 Seok 
 

*** 
    

** 
 

* * 4 / 1 *** + 1 ** + 2 * 

12 Weng 
 

*** 
 

* * 
 

** 
   

4 / 1 *** + 1 ** + 2 * 

 

Template-free docking approaches have been successful in generating near-

native docking poses. However, detection of native-like conformation among a pool of 

decoys remains a challenge. Therefore, several scoring functions have been proposed to 

re-rank docking conformations at the refinement stage. Among them, usage of predicted 

interface residues has shown great popularity since other methods have limitations: (i) 

knowledge-based potentials show low correlation to binding affinities (ii) experimental 

data are not available for all proteins and (iii) usage of learning strategies has not 

significantly improved the knowledge-based potentials scoring functions. With 

improvement in protein interface prediction methods, re-ranking based on that 

knowledge can improve detection of near-native models. With the increase in 

experimentally determined proteins and the recent developments in template-based 

interface predictors, further improvements in re-ranking methods using predicted 

interfaces should be further investigated.   



Chapter 2 Literature Review Datasets and Metrics 
 

80 

2.5 Datasets and Metrics 

2.5.1 Protein Interface Prediction Evaluation 

In order to compare the performance of interface predictors it is important to 

calculate their True Positive (TP), False Positive (FP), True Negative (TN) and False 

Negative (FN) rates (Yan et al. 2004). TP refers to interface residues correctly predicted 

as interface, FP to non-interface residue wrongly predicted as interface, TN to non-

interface residues correctly predicted as non-interface and FN to interface residues 

wrongly predicted as non-interface. The correctness and wrongness of predictions are 

calculated in respect to the ground truth (GT), which is defined as the X-ray structure of 

the target protein in its complex form.  To summarise these four figures into a single 

performance measure a few metrics have been proposed. Below these metrics are 

introduced where each one evaluates the predictor from a different aspect. Note that 

these metrics are expressed as percentage by multiplying by 100 but for simplicity *100 

is not demonstrated in the formulas below. 

To study the quality of predicted interface residues in respect to GT interfaces, 

recall is used: 

       
  

     
 

 

In other word recall (also called sensitivity) evaluates the percentage of correctly 

predicted interfaces. A complement measure to recall is introduced by precision which 

evaluates how many of the predicted interfaces are actually a GT interface:  

 

          
  

     
 

To summarise, high recall means that the predictor has correctly predicted most 

of the GT interfaces while high precision means that the list of predicted interfaces 

contains more correct predictions than wrong prediction. The two examples below show 

how precision and recall complement each other: 

Example 1: Assume a protein with 10,000 residues which has 100 interfaces. If a 

predictor, predicts all residues as non-interface except one which is correctly predicted 
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as interface then it will achieve a precision~100% while this predictor is not of any use. 

The recall of this predictor will be ~1% which will highlight this problem. 

Example 2: if for the above example the predictor, predicts the entire residues as 

interface then recall will be ~100% while precision~1%. 

Since, precision and recall do not capture the information of TNs, specificity was 

introduced which explains the percentage of non-interfaces which are correctly 

predicted as non-interfaces: 

 

            
  

     
 

 

None of the above mentioned metrics consider the four figures of (TP, TN, FP 

and FN) at the same time which can bias the performance comparison. Therefore, 

metrics which integrate all the four figures were introduced  (Baldi et al. 2000). 

Accuracy has been one of the widely used metrics which express the ration of 

correctly predicted interface and non-interface residues to the total number of cases: 

 

         
     

           
 

 

But one drawback of using accuracy is that in cases such as above Example 1, 

the accuracy will be ~99%. Therefore, another measure, F1 score was introduced which, 

calculates the harmonic mean of precision and recall: 

 

   
                  

                
 

 

Since F1 score does not consider true negative rate, Matthews correlation 

coefficient (MCC) was introduced: 

 

    
               

√                               
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MCC has shown to be effective especially for predictors which are biased 

because of the imbalances in their training set. For instance in situations similar to 

Example 1 mentioned above, MCC has shown to discriminate between predictor 

performances.   

A widely used method to express specificity against recall in a binary 

classification predictor is receiving operator characteristic (ROC) plots. Roc curves, 

express a predictors false positive rate (1-specificity) relative to true positive rate 

(recall) at various threshold values. This curve can be expressed by calculating the Area 

under the Roc Curve (AUC) which evaluates if positive samples are ranked higher than 

negative samples. Therefore, for a perfect predictor AUC will be 100% and for a 

predictor no better than random will be 50%. It is also possible to get a curve worse 

than random which means that the predictor has a negative correlation with the actual 

answer. 

The above mentioned metrics capture different aspects of the predictors and 

therefore, all of them are required to give an insight to the predictor’s performance. In 

this thesis we have exploited all these metrics to compare interface predictors.  

2.5.2 Docking Algorithm Evaluation 

The performances of docking algorithms are evaluated in CAPRI (Critical 

Assessment of Predicted Interactions) (Janin et al. 2003), which is a biannual 

community-wide experiment for docking. In CAPRI competition the aim is to dock 

protein-protein complexes from the individual components –extracted from the PDB 

(Berman et al. 2000)- of the final target. Up to now (August 2013) CAPRI has had 28 

rounds, modelling 59 targets. It should be noted that some of the targets have been 

protein-RNA complex, such as T33 (T stands for Target), and some of the individual 

components might require homology modelling, such as components of T51 and T59, 

since their structures are not available in PDB.  

Predictors can submit up to 10 docked models to CAPRI, which will be 

evaluated against the unpublished experimental structures (Janin 2013). In addition to 

prediction assessment, in recent years CAPRI has introduced experiments for scorer 

groups to evaluate their re-ranking performance. In this part, for each target, the 
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predictors will upload hundreds of their docked poses creating a big repository of 

docked models. Then, the scorers will use their scoring methods to re-rank these models 

and submit at most the top 10 models.  

To assess the submitted models of predictors three main criteria is used by 

CAPRI (Janin 2005). Assume that receptor (R) is the larger component and ligand (L) is 

the smaller component: 

 

1)       : measures the root mean square displacement (rmsd) of the 

backbone atoms (C-alpha atoms) of the target and model’s L, after optimally 

aligning the R of target and model.  

2)       : measures the root mean square displacement (rmsd) of the 

backbone atoms (C-alpha atoms) of all interface residues of the target and 

model’s L, after optimally aligning the R of target and model. Interface on L 

is defined as all residues that have atoms less than 5 Å apart from the R. 

3)      :  measures fraction of native contacts using            where     is 

the total number of residue pair contacts in the target complex and    is the 

number of native contacts of the target which is also present in the docked 

model.  

 

Based on these three criteria CAPRI evaluates the listed inequalities available in 

Table 2.4 (going from top to bottom) to give starts to the quality of each docked model: 

no star (incorrect), * (acceptable), ** (medium), and *** (high). 

Table 2.4: CAPRI Assessment Criteria as shown in (Lensink & Wodak 2010). 

Incorrect           OR             AND            

Acceptable           AND            AND            

 OR 
               AND              OR             

Medium           AND            AND            

 OR 
               AND             OR             

High           AND            AND            

 

In this thesis, we require to compare the performance of different scorer methods 

in re-ranking docked conformations. These docked models are evaluated by CAPRI 
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criteria but the four categories of CAPRI (incorrect, acceptable, medium and high) do 

not provide a continuous ranking of all models. Therefore,        and        

are used separately to provide two gold standard rankings of docked models.       has 

not been used to generate another ranking list since      can only discriminate between 

relatively good configurations- all models failing to predict a single interface residue 

receive a score of 0.  

As it was proposed by (Xue et al. n.d.), different scorer methods can be 

evaluated by calculating the Pearson's chi-squared statistic between a gold standard 

ranking of models and rankings generated by scorer methods. The chi-squared statistic 

(  ) determines the goodness of relationship between a set of observed and a set of 

expected values: 

 

   ∑
                     

 

         

 

   

  

 

Here,           is the rank of the model   in the gold standard and           

is the rank assigned to model   by a ranking method. Since the number of docked 

models may differ between protein pairs, the chi-squared statistic is normalized using 

the total number of docked models produced for that protein pair,  : 

 

             
  

 
  

 

             represents the similarity between two ranking lists by giving 

higher weights to the models that are ranked higher based on the gold standard: correct 

ranking is more important for top-ranking models than lower-ranking models. Perfect 

ranking would return a value of 0. 
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2.5.3 Datasets 

Three standard benchmark datasets which are widely used by protein interface 

and docking predictors, are used in this thesis: Ds56unbound (Janin & Wodak 2007), 

Docking Benchmark 3.0 (DBMK3.0) (Hwang et al. 2008) and Docking Benchmark 4.0 

(DBMK4.0) (Hwang, Vreven, Janin, et al. 2010) . In this thesis, Ds56unbound has been 

mainly used as training set while, DBMK3.0/4.0 has been used for evaluating the 

interface predictors and docking model ranking approaches. These datasets contain 

high-resolution protein structures both in their unbound and bound forms.  

Ds56unbound is comprised of 56 unbound chains generated from 27 CAPRI 

targets, T01~T27 (Janin & Wodak 2007). In total, it contains 12173 residues including 

2112 interacting ones (Jordan et al. 2012). Since interface residues are not explicitly 

provided in DS56unbound, they were generated from the interface residues in their 

bound form (DS56bound). The DS56bound contains 12123 residues including 2154 

interacting ones. Interfaces are defined using the same definition as CAPRI’s, i.e. all 

residues of a protein chain that have atoms less than 5 Å apart from the interacting 

partner.  

DBMK was originally introduced as DBMK 0.0 for the evaluation of ZDOCK 

(Chen & Weng 2002) docking method. At that point it consisted of 54 complex targets 

(22 enzyme-inhibitor complexes, 16 antibody-antigen complexes, 10 complexes with 

other function, and 6 difficult cases) where only 29 of them had both the receptor and 

ligand in their unbound form. Difficult cases are complexes which have large 

conformational changes between their bound and unbound forms. Later on, DBMK 1.0 

(Chen, Mintseris, et al. 2003) was introduced which added 5 new targets to the previous 

benchmark resulting in a total of 59 targets (22 enzyme-inhibitor complexes, 19 

antibody-antigen complexes, 11 other complexes, and 7 difficult cases) with 31 targets 

being unbound-unbound. By 2005, DBMK 2.0 (Mintseris et al. 2005) was introduced, 

which only involved unbound-unbound targets and redundancy was removed among 

chains using SCOP classification (Murzin et al. 1995). In DBMK 2.0, targets are 

classified into three categories - rigid body, medium difficulty and difficult - based on 

their degree of conformational change between the bound and unbound forms. This 

resulted in 72 unbound–unbound cases in DBMK2.0, with 52 rigid-body, 13 medium 

difficulty, and 7 high difficulty cases. In 2008, DBMK3.0 (Hwang et al. 2008) extend to 
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124 unbound-unbound targets from 309 protein chains with 88 Rigid-body, 19 medium, 

and 17 difficult cases. The most recent benchmark, DBMK4.0 (Hwang, Vreven, Janin, 

et al. 2010), is an extension of DBMK3.0 with 53 new targets (total 176 targets: 123 

Rigid-body, 29 medium, and 24 difficult.). In total, DBMK 4.0 contains 52 enzyme-

inhibitor, 25 antibody-antigens, and 99 other complexes. These datasets contain 

essentially dimers, but there are also a few trimers and tetramers. In this thesis we have 

focused on DBMK3.0 and DBMK4.0 to compare between interface predictors and 

docking methods.  
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3 Binding Site 3D Motif for Docking 

Model Evaluation  

3.1 Introduction 

Docking algorithms have been used to model the complex formed by protein 

chains and are capable of producing native-like models. However, their energy-based 

scoring functions are not reliable enough to detect native-like poses among a large pool 

of decoys (Gray 2006; Kastritis & Bonvin 2010). Therefore, scoring functions utilising 

experimental mutation studies have been proposed to assist this detection (Van Dijk, 

Boelens, et al. 2005). This is usually achieved by conducting mutation analysis on  the 

top ranked models in terms of low energy (Sivasubramanian et al. 2006).  However, 

native-like models may fail to be part of that short energy based list which leads to poor 

predictions. To address this, in this chapter we propose to create a more reliable list by 

introducing 3D motifs of structural binding sites for re-ranking predicted docking 

models (Esmaielbeiki et al. 2012). As a proof of concept we investigate the mode of 

interaction between an antimicrobial peptide and a lipoprotein receptor. 

The rest of the chapter is organised as follows, Section 3.2 investigates the use 

of experimental mutation studies in detection of native-like docked poses. Section 3.3 

provides an introduction to antimicrobial peptide and lipoprotein receptor. The proposed 

methodology is described in details in section 3.4 and evaluated and discussed in 

section 3.5 and 3.6. Finally, section 3.7 concludes the chapter. 
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3.2 Related Work 

Protein-protein docking aims to computationally predict the 3D structure of 

protein complexes using the unbound structures of its components (Lensink et al. 2007; 

Wodak & Méndez 2004; Janin 2010). By the year 2000, several docking algorithms had 

been introduced and, with the constant increase of the number of protein structures 

determined by high-throughput X-ray and NMR experiments, docking had become a 

popular method for generating new complex models (Janin 2013). From then, a new 

scientific question emerged: should the quality and accuracy of docked models be 

trusted?  Therefore, to regularly assess different docking methods, in 2001 a biannually 

blind prediction competition for comparing the performances of docking algorithms, the 

Critical Assessment of Predicted Interaction (CAPRI)  (Janin et al. 2003), was 

introduced. In this competition, predictors – humans and servers – are required to dock 

protein structures taken from the PDB (Berman et al. 2000) and the produced models 

are compared against the unpublished experimentally determined structures of the 

relevant complexes (Janin et al. 2003). A similar blind prediction challenge in a smaller 

scale was conducted in 1996 (Strynadka et al. 1996), for predicting the complex of β-

lactamase inhibitory protein (BLIP) and TEM-1 β-lactamase. Only 6 different 

computational docking algorithms compete against each other and their produced 

models were compared against the unpublished ground truth complex. The results 

showed that despite significant local and global conformational changes in the ground 

truth docking methods correctly predicted the general mode of binding of BLIP and 

TEM-1. By 2011, CAPRI (Janin 2010; Janin 2013) had 22 rounds targeting 43 

complexes with an average of 45 predictors in which 70% of the targets received good 

quality models from different docking predictors (Janin 2013). CAPRI results show that 

the quality of docked models has steadily increased and docking algorithms have 

produced models which correspond to native complexes (Janin 2010; Wodak & Méndez 

2004). For example, target T37 which was a prediction between the G-protein Arf6 and 

the LZ2 leucine zipper of JIP4 resulted in good quality models by five different groups 

(Janin 2010; Wodak & Méndez 2004). Figure 3.1 displays the superposition of the best 

predicted model on the native structure. The predicted complexes of other groups are 
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shown as the centre of mass of LZ2 in dots where yellow and cyan represent incorrect 

and acceptable-quality models, respectively. 

 

Figure 3.1: A successful docking prediction of target T37 in CAPRI competition, i.e. a complex 

between the G-protein Arf6 and the LZ2 leucine zipper of JIP4. The successful prediction is 

superposed on the x-ray native structure. Other models submitted by other groups are shown by a 

dot at the centre of mass of the LZ2. The dots are coloured cyan and yellow for acceptable-quality 

and incorrect models, respectively. Taken from (Janin 2010).  

Although docking algorithms are able to produce correct complex 

conformations, they have to be identified among a large number – often hundreds - of 

putative models. Therefore scoring functions are required to select the most plausible 

solutions (see Chapter 2). Hence, alongside docking competitions, CAPRI also 

evaluates scoring methods. After each prediction round, predictor groups provide 

hundreds of their docked models which are merged together to create a repository of 

thousands of docked models. Then, scorer groups aim to identify the best top 10 models 

within that repository.  Interesting results shows that scorers provide more accurate 

models than the predictors (Janin 2013). Since scorers select models from the repository 

created by predictors, this shows that docking methods are capable of creating good 
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quality models but may fail distinguishing them due to incorrect rankings. Therefore, 

scoring functions are required to create reliable rankings of docked models. 

Combining experimental biochemical and biophysical data such as Mutagenesis, 

Mass spectrometry and NMR studies into docking methods not only result in better 

quality prediction, but also provide useful biological insight (Van Dijk, Boelens, et al. 

2005). Experimental data can either be used to drive the docking procedure or to score 

docking conformations (see Chapter 2). However, as discussed in Chapter 2 section, 

post-filtering docking results is more robust.  

Usage of mutagenesis studies as a post-filtering approach has been used in real 

applications. One early study aiming at understanding nucleocytoplasmic 

communications (Azuma et al. 1999) required the prediction of the complex of the 

small GTP-binding protein Ran and its regulator RCC1 (which is a chromatin 

associated guanine nucleotide exchange factor). Using GRAMM docking and mutation 

studies, the predicted Ran-RCC1 complex clarified the binding sites and the mechanism 

of nucleocytoplasmic transport (Scheffzek, Klaus and Wittinghofer 2001; Azuma et al. 

1999). In another study, prediction of C1q in complex with C-reactive protein and IgG 

(Gaboriaud et al. 2003), also using docking and mutation studies, highlighted the two 

possible mode of interaction of C1q. A recent study exploits experimental information 

to create docking models of monoclonal antibody (mAb) 806 with epidermal growth 

factor receptor (EGFR) for real application (Gray 2006; Sivasubramanian et al. 2006). 

Docked models produced by RosettaDock (Gray et al. 2003) were filtered using 

residues important for mAb 806 binding as identified by mutagenesis studies. 

Eventually, among the three plausible models (Sivasubramanian et al. 2006), further 

computational mutagenesis identified a single candidate. This model emphasises the 

hypothesis that mAb 806 only binds to cancerous cells. 

To conclude, these studies confirm that docking algorithms are capable to 

produce models which correspond to the real conformations. However, since docking 

algorithms provide an energy-based ranking of their large set of predicted models, 

which have proven not to be reliable (Gray 2006; Kastritis & Bonvin 2010) and fail to 

distinguish the near-native models, scoring techniques are required to rank and detect 

these models. Therefore, experimental mutation studies has been used to assist this 

detection (Van Dijk, Boelens, et al. 2005). To efficiently achieve this detection, 
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mutation analysis are performed on a short list of the top ranked models with lower 

energy (Sivasubramanian et al. 2006). Therefore, to create a reliable shortlist of docked 

models an extra step is required prior to mutation analysis.  

In this chapter we introduce 3D motifs of structural binding sites for ranking 

predicted docking models and selection of near-native configurations. As a proof of 

concept we investigate the mode of interaction between an antimicrobial peptide and a 

lipoprotein receptor, i.e. a α-defensin and a Low Density Lipoprotein Receptor (LDLR), 

by the mean of predicted structural models (Nassar et al. 2002; Chang et al. 2005; 

Fuentealba et al. 2010; Nakashima et al. 1993; Higazi et al. 2000). First, we produce a 

novel 3D motif which describes the binding characteristics of LDLR-ligand 

interactions. Then, the motif is used as constraint to re-rank LDLR-α-defensin complex 

models generated by state of the art docking software. Finally, using mutagenesis 

studies and energy calculation, the most plausible models are selected.  

3.3 Biological Background 

Human antimicrobial peptides (AMPs) have come under intense scrutiny owing 

to their key multiple roles as antimicrobial agents against a range of bacteria, fungi and 

viruses. These roles have been reported to involve immunostimulation via chemotaxis, 

direct action on viral particles, and binding to, followed by internalisation, into 

mammalian cells where antimicrobial activity is manifested through inhibition of viral 

replication, via inhibition of protein kinase C signalling (Nassar et al. 2002; Chang et al. 

2005; Fuentealba et al. 2010).  

These molecules provide enormous scope for the investigation of mechanisms 

involved in infection, along with immune response events, and represent a reservoir of 

potential novel anti-infective agents. In this vein, the use of synthetic AMPs to treat 

HIV was reported as early as 1993 (Nakashima et al. 1993).  Given the increase of drug 

resistant infections (Frieden et al. 1993; Cohen 1992) and the relative paucity of new 

clinically effective antimicrobial agents, further studies are warranted to optimise the 

activities of natural and synthetic AMPs.  

One key step, which requires further study, is to optimise the binding of 

(synthetic) AMPs to mammalian cells to afford internalisation for intracellular defences 

to operate. Following the reported interaction of human α-defensins with a low density 
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lipoprotein receptor (LDLR) (Nassar et al. 2002; Chang et al. 2005; Fuentealba et al. 

2010), a plausible approach is to study potential interactions between AMPs and the 

LDLR.  

3.3.1 Antimicrobial Peptides 

Antimicrobial peptides (AMPs) (Diamond et al. 2009) are part of the innate 

immune system; they provide defences against microbial pathogens such as bacteria, 

fungi and viruses. They also act as immunomodulators and can activate specific 

immune cells by binding to host receptors (Wei et al. 2010).  AMPs are short peptides 

with fewer than 60 amino acids; they are positively charged and are amphiphilic which 

means possessing the two attributes of being hydrophilic (water-loving) and 

hydrophobic (fat-loving).  

AMPs are categorised into four distinct groups based on their structure, number 

of disulphide bonds and amino acid composition (Diamond et al. 2009; Schneider et al. 

2005). One of the main groups is mammalian defensins which have a triple-stranded 

antiparallel β-sheet, stabilised by three intermolecular disulphide bonds. Based on their 

disulphide bond patterns, those peptides are classed into three sub-groups: α-defensins, 

β-defensins and θ-defensins.  

Currently (up to June 2011), six different types of human α-defensins are known 

(Schneider et al. 2005; Van Wetering et al. 2005): four of them, i.e. HNP 1-4 (Human 

Neutrophil Peptides), are found in neutrophil
1
  and the two others, i.e. HD-5 and HD-6, 

are present in intestinal Paneth cells
2
 where HD-5 is also found in epithelial

3
 cells of the 

female genital tract. Figure 3.2 displays the six human α-defensins sequences and their 

disulphide linkage.  

                                                 
1 A type of white blood cell that kills and digests microorganisms.  
2 Paneth cells provide defense against microbes in the small intestine and are functionally similar to neutrophils. Paneth cells secrete 

antimicrobial molecules when they are exposed to bacteria. 
3 Epithelium is a layer of cells which covers and protects the surfaces of structures throughout the body. 

http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Cell_(biology)
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Figure 3.2: Sequence alignment of the six human α-defensins and their disulphide linkage. Ten 

conserved amino-acids can be seen which include six cysteines that are involved in the disulphide 

bonds. The conserved Cysteines are important for stabilising the structure. 

3.3.1.1 Humanα-Defensins Structure 

The structural folds of these arginine-rich peptides are unique among the known 

AMPs. In 1991, Hill et al. (Hill et al. 1991) determined the first crystal structure of the 

human α-defensins, HNP3 (Figure 3.3), which is now considered as the archetype 

structure of this family (Diamond et al. 2009). Since residues essential for correct 

protein folding are conserved among α-defensins family (Figure 3.4), they all display a 

similar structure to HNP3 (Hill et al. 1991). The main features are: 1) six Cysteines 

which are important for stabilising the structure, and 2) the Gly18 residue which is part 

of the conserved β-bulge (Xie et al. 2005) and is essential for correct folding. These 

conserved residues are highlighted using arrows in Figure 3.4. 

 The HNP3 structure contains three- stranded antiparallel β-sheets which contain 

60% of the residues and are held in place using three disulphide bonds. The most 

conserved feature among the human defensins structures is the β-bulge found in the 

middle of the second beta-sheet. This β-bulge initiates a β-hairpin between the second 

and third hydrogen-bonded anti-parallel β-sheets which is closed by the Cys10-Cys30 

disulphide bond. Finally, the β-strand located at the N-terminus is hydrogen bonded to 

the β hairpin to produce a three-stranded β structure. In addition, the sequence of 

residues which are not involved in the β-sheet is stabilised by a Arg6-Glu14 salt bridge 

(Figure 3.4) which creates a rigid conformation.  
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Figure 3.3: HNP3 monomer (PDB code: 1DFN). The three beta strand and the termini are shown 

on the figure. The Cys residues are coloured in yellow and C1, C2, C3, C4, C5 and C6 represent 

Cys3, Cys5, Cys10, Cys20, Cys30 and Cys31, respectively. 

 

Figure 3.4: Sequences of defensins to show the conserved sections in comparisons to HNP3. Since 

the Cysteines are essential to stabilise the protein, they are conserved. Gly 18 which is important for 

the correct folding and is part of the conservedβ-bulge is shown by arrow. Arg6-Glu14 salt bridge 

stabilises the sequenceofresidueswhicharenot involved intheβ-sheet. The colouring scheme is 

obtained by ClutalW. Each colourisassociatedwitha{threshold,residuegroup}where‘threshold’

means the minimum percentage of the presence of the ‘residue group’ in that location. In this

image the colours and their associated {threshold, residue group} are: PINK {100%, C}, RED 

{+60%,KR},{+80%, K,R,Q}, MAGENTA {+60%,KR},{+50%,QE},{+85%,E,Q,D} and ORANGE 

{+0%, G}. 
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Crystal of HNP3 shows a symmetric dimer (Hill et al. 1991) which displays a 

basket shape structure (Figure 3.5). The core and top of the basket are respectively 

hydrophobic and hydrophilic, with six arginine residues forming an equatorial ring 

around the dimer. The twists and coils in the structure cause hydrogen bonds between 

the N-terminus of the two monomers and, therefore, form a mini-channel inside the 

dimer. The mini-channel and the hydrophobic patch allow the defensins to perform their 

antibacterial activity through interacting and entering the bacteria membrane (Hill et al. 

1991) (See section 3.3.1.2).  

 

Figure 3.5: HNP3’s basket shapewith polar top and apolar base taken from PDB code: 1DFN. 

Polar and apolar residues are coloured in blue and red, respectively. The core and top of the basket 

are apolar and polar, respectively. The mini-channel inside the dimer allows the defensins to 

perform antibacterial activity. 

3.3.1.2 Defensins Mechanism of Action 

Defensins adopt various techniques for providing the immunity against bacteria 

and antivirus microorganism. The widely accepted defensins’ bacteria killing technique 

is by disrupting the bacteria membrane and creating pore which results in the death of 

the cell (Kagan et al. 1990). This is because of the electrostatic attraction of cationic 

defensins and negatively charge membrane. Studies (Ericksen et al. 2005) have also 

shown that not only cationicity but also hydrophobicity of defensins governs their 

ability in bacterial killing. For example, HNP1 (with +3 charge) is more effective in 
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response to S.aureus (Gram-positive) than HBD3 (with + 11 charge). Further studies on 

α-defensins antibacterial activity (Leeuw et al. 2010) shows that they not only  kill 

bacteria by targeting their membrane but also by interacting with their intracellular 

components. For example, HNP1 interacts with Lipid II which is a component of the 

bacteria cell wall.  

Defensins respond to viral infection in two distinct ways (Klotman & Chang 

2006; Chang et al. 2005): first, similar to their antibacterial activity technique by 

directly attacking the viron, or second, indirectly by interacting with the target cells. 

Figure 3.6, taken from (Klotman & Chang 2006), displays HNP1 dual role in blocking 

HIV-1. Whereas, in the absence of serum the interaction between HNP1 and the viral 

glycoprotein inhibits HIV-1 replication, in the presence of serum, HNP1 blocks HIV-1 

at nuclear import and transcription stage by interfering with its affected cell protein 

kinase C (PKC) signalling pathway. This can be achieved by HNP1 interaction with G-

protein coupled receptors (GPCR) or other cell surface receptors such as low-density-

lipoprotein receptor (LDLR). HNP2 and HNP3 have shown similar activity against 

HIV-1 (Klotman & Chang 2006). 

 

 

Figure 3.6: Dual antiviral mechanism of defensins. a) In the absence of serum HNP1 directly 

interacts with the viral glycoprotein which inhibits HIV-1 replication. b) In the presence of serum, 

HNP1 blocks HIV-1 at nuclear import and transcription stage by interfering with its affected cell 

protein kinase C (PKC) signalling pathway. Taken from (Klotman & Chang 2006). 
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3.3.1 Low Density Lipoprotein Receptor  

The LDLR family contains seven homologous members and is responsible for 

mediating different types of ligands especially cholesterol into the cell (Blacklow 2007). 

Their structure is composed of several domains which include a ligand binding (LB)  

domain (Guttman, Prieto, Croy, et al. 2010) composed of ligand binding modules 

(LAs), also named complement-type repeats (CRs), a beta-propeller domain and 

transmembrane and cytoplasmic sections (Figure 3.7, top row).  

 

 

Figure 3.7: Modular structure of LDLR receptor family: general domain pattern (top) and 

schematic representation of the LDLR-ligand binding modes of known complexes (bottom). (top) 

The structure of LDLR family is composed of several domains including a ligand binding (LB)  

domain, composed of ligand binding modules, beta-propeller, transmembrane and cytoplasmic 

domains. (bottom) The two modes of interaction among LDLR-ligand complexes are shown. In 

mode 1, two ligand binding modules of LDLR are necessary to interact with the ligand, while in 

mode 2, only one ligand binding module is used. 

The Low-density lipoprotein receptor family interacts with a wide variety of 

human and virion proteins (Fisher et al. 2006) through their homologous LA modules 

which are between 40-50 residues long (Beglov et al. 2009; Herz & Bock 2002) (Figure 
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3.8). LA’s structure is stabilised by three disulphide bonds and a calcium ion (Guttman, 

Prieto, Handel, et al. 2010; Rudenko & Deisenhofer 2003). This ion is an essential 

element of the ligand binding domain conformation since it is required to establish 

interaction between LDLR and the ligand (Fisher et al. 2006; Dirlam-Schatz & Attie 

1998). 

 

Figure 3.8: Multiple sequence and structure alignment of ligand binding domains of LDLR family 

complexes. In the sequence alignment, residues involved in calcium interaction are denoted by dots. 

The three conserved acidic residues and conserved tryptophan/ phenylalanine are highlighted with 

black arrows. Sequence numbering is based on 2KRI:B. In the structure alignment the three 

conserved acidic residues and conserved tryptophan are shown on 2KRI structure. Residues 

numbering is based on 2KRI:B. The ligand binding domains associated with each colour are: 

2KRI-A4: red, 2FCW-A3:green, 2FCW-A4:dark blue, 2FYL-CR5:purple, 2FYL-CR6:yellow, 

2KNY-CR17:orange, 1N7D-A4:deep teal, 1N7D-A5: grey, 1V9U-V3: pink. 
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High-resolution crystal structures of the available LDLR complexes have 

revealed that electrostatic forces play an important role in interactions (Fisher et al. 

2006). This key function is captured by the minimal interaction motif described by 

Jensen et al. (Jensen et al. 2006) (Figure 3.9), which also highlights a hydrophobic 

element in the interaction. The receptor’s conserved acidic residues (ASP/GLU) interact 

with a ligand’s lysine through a salt bridge creating a hydrophobic environment for the 

side chain of a receptor’s tryptophan (TRP).  In addition, a hydrophobic side chain, ψ, 

(usually Leucine or Isoleucine) from the ligand sits next to TRP. 

 

 

Figure 3.9: Minimal binding motif defined by Jensen et al. (Jensen et al. 2006). The motif highlights 

the importance of electrostatic and hydrophobic forces in LDLR complexes. The LDLR’s

(RECEPTOR) conserved acidic residues (ASP/GLU) interact with a LIGAND’slysine (LYS). This 

salt bridge creates a hydrophobic environment for the side chain of the receptor’s tryptophan 

(TRP). Moreover, Ψ, a hydrophobic side chain from the LIGAND sits next to TRP. 

3.4 Proposed Methodology 

3.3.2 Overview 

Although docking methods usually produce correct configurations, their ranking 

is not reliable enough. Consequently, re-ranking models is required to enable the 

selection of a near-native model. Therefore, to achieve this we propose a method in 

which using binding site 3D motifs, docking models are scored and ranked. This 

method consists of two main modules: 1) creation of 3D motif (Figure 3.10), 2) 

Ranking docking conformations using this motif (Figure 3.11).  
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A 3D motif is a structural descriptor of a protein binding site, which describes 

the 3D pattern a specific protein (here, called receptor) uses to bind to its ligands (here, 

ligand refers to any interacting partner of a protein). 3D motifs are created by extracting 

the homologous complexes of a specific receptor target from PDB (Berman et al. 2000) 

(See Figure 3.10). Then the binding sites of the homologous complexes are analysed to 

identify the interface residues which are structurally conserved among the homologues. 

Afterward, a selected set of atoms are aligned and the 3D motif is created. This motif is 

evaluated using a leave-one-out strategy (see section 3.3.8) which means leaving one 

homologous protein out of the training set and generating the 3D motif based on the 

other homologous proteins. Docked models are created for the left-out homologue and 

its ligand which are already ranked by the docking tool scoring function.  The 3D motif 

is then used to re-rank the docked poses. Another ranking list is generated based on 

comparing the RMSD of docked models with the ground truth. The 3D motif is judged 

unsatisfactory, i.e. fails, if its ranking does not improve the docking tool ranking in 

comparison to the ground truth. In that case, another subset of the current atoms are 

selected to create a new 3D motif.  

 

 

Figure 3.10: The pipeline for creating 3D motif. First, homologous complexes of the 3D Receptor 

(A) are extracted from PDB. Second, structurally conserved binding sites of the homologues and 

their partners are identified. Third, the positions of residues on homologues are averaged while 

their interacting partner residues are kept. This process results in generating a putative binding 

site 3D motif which is then evaluated with a leave-one-out cross validation. 

Using the 3D motif created in the previous stage, docked receptor-ligand 

conformations are evaluated and re-ranked (Figure 3.11). Finally, the best models are 

selected using mutagenesis studies and energy calculation. 
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Figure 3.11: The pipeline for re-ranking docking models. Docked models Receptor and Ligand are 

generated which results in a set of docked predicted models. Then, the binding site 3D motif of the 

Receptor is used to evaluate and create a ranked list of docked models.  This list is further assessed 

using mutagenesis studies and energy calculation. 

In this study, we focus on predicting the configuration of the LDLR-HNP1 

complex. First, a 3D motif capturing atomic interactions of LDLR binding interface is 

created. A 3D motif could not be created for HNP1, since no homologous complex it is 

known. Second, state-of-the-art docking software produces a set of LDLR-HNP1 

complex models which are re-ranked based on the LDLR 3D motif. Models 

incompatible with mutagenesis studies are rejected and finally, binding energy 

estimations are used to identify the most stable of the remaining models. 

3.3.3 Dataset 

Our study relies on the investigation of all 3D complexes involving a ligand 

binding domain of the LDLR family. Query of the RCSB Protein Data Bank (Berman et 

al. 2000) using BLAST (Altschul et al. 1997) on March 2011 revealed that the 

structures of six complexes have been resolved (Table 3.1). They all involve human 

proteins belonging to three members of the LDLR family, i.e. Low-density Lipoprotein 

receptor (LDLR), lipoprotein receptor-related protein 1 (LRP1) and Very low-density 

lipoprotein receptor (VLDLR). The sequences of their ligand binding domain were 

extracted from Uniprot (Suzek et al. 2007), where their accession numbers are P01130: 

LDLR, P98155: VLDLR and Q07954: LRP1, respectively. Although their ligand 

binding modules are named LA, CR and V for LDLR, LRP and VLDR, respectively, in 

this paper we use LA when referring to any of them.  
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Table 3.1: Known 3D structures of complexes involving members of the LDLR family. The PDB 

Code of the structures is provided along with the ligand binding domain name. The ligand complete 

name and its domain name are also given in the table. 

PDB Code 
Receptor  and 

Domains 
Ligand Ligand Complete Name 

2FCW (Fisher et al. 

2006) 
LDLR      

LA3,LA4 
MRAP D3 

Alpha-2-macroglobulin 

receptor-associated protein 

Domain 3 

2FYL (Jensen et al. 

2006) 
LRP        

CR5,CR6 
MRAP D1 

Alpha-2-macroglobulin 

receptor-associated protein 

Domain 1 

2KRI (Beglov et al. 

2009) 
LDLR      LA4 Apo(H) Beta-2-glycoprotein 1 

2KNY (Guttman, Prieto, 

Handel, et al. 2010) 
LRP        

CR17 
Apo(E) Apolipoprotein E 

1N7D (Rudenko et al. 

2002) 
LDLR      

LA4,LA5 
LDLR beta 

propeller 
- 

1V9U (Verdaguer et al. 

2004) 
VLDLR    V3 HRV2 VP1 

Human rhinovirus 2 Viral 

Protein 1 

 

In agreement with the existing 2D motif (Jensen et al. 2006), sequence 

alignment of the LA modules (Figure 3.8) using ClustalW (Chenna et al. 2003) shows 

highly conserved acidic residues and a tryptophan/phenylalanine (TRP/PHE) - pairwise 

E-values were calculated using BLAST (Altschul et al. 1997) (Table 3.2). Structural 

conservation of the ligand binding domains of the receptors, i.e. LA3, LA4, LA5, CR5, 

CR6, CR17 and V3, are illustrated (Figure 3.8) and quantified (Table 3.2) using the 3D 

alignment tool Pymol (Schrödinger, LLC 2010).  

Since LA4 is the domain which is the most common in this set - in three cases 

out of six – it is used as representative for the purpose of α-defensin docking. Similarly, 

among these AMPs, defensin Human Neutrophil Peptide-1 (HNP1), which has been 

specifically shown to interact with LDLR (Nassar et al. 2002; Higazi et al. 2000), is 

selected as representative. Sequences and structures of HNP1 and LA4 were extracted 

from the PDB (Berman et al. 2000): 3GNY (Wei et al. 2009) and 2KRI (Beglov et al. 

2009) codes respectively. 
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Table 3.2: E-value between sequences of the Ligand binding domains and RMSD between their 3D 

structures. Sequence similarities are calculated using BLAST and structural RMSD is estimated 

using Pymol (Schrödinger, LLC 2010). 

 

3.3.4 Modes of Interactions of LDLR-Ligand Complexes 

Within the known LDLR-ligand complexes, two modes of interaction between 

the LB module and the ligand have been identified (Figure 3.7, bottom rows). In the 

first mode, two ligand binding modules of LDLR are required to establish an interaction 

with the ligand. In 2FCW (Fisher et al. 2006) the third and fourth modules of the ligand 

binding domain (LA3,4) bind to MRAP domain 3 (MRAPD3). In 2FYL (Jensen et al. 

2006), two modules of complement-type ligand binding repeats (CR5,6) interact with 

two different sections of MRAP domain 1 (MRAPD1). Similarly, LA4,5 of 1N7D 

(Rudenko et al. 2002) bind to two different sites of LDLR beta propeller. 

In the second mode, only one ligand binding module of LDLR binds to the 

ligand.  Apo(H) and Apo(E)  bind to A4 in 2KRI and CR17 in 2KNY, respectively. In 

Sequence Similarity 

 
2FCWA

3 

2FCWA

4 

2FYLCR

5 

2FYLCR

6 

2KRIA

4 

2KNYCR1

7 

1N7DA

4 

1N7DA

5 

1V9UVD

3 

2FCWA3 1e-19 2e-09 3e-08 2e-08 2e-09 4e-08 1e-07 4e-07 2e-04 

2FCWA4  1e-23 2e-08 6e-08 2e-21 1e-10 1e-18 9e-08 2e-06 

2FYLCR5   3e-23 2e-11 2e-08 3e-09 3e-07 4e-08 1e-06 

2FYLCR6    1e-22 6e-08 2e-06 1e-07 1e-08 2e-06 

2KRIA4     2e-21 1e-10 1e-18 8e-08 4e-06 

2KNYCR1

7 
     9e-30 6e-08 5e-05 4e-06 

1N7DA4       2e-23 2e-07 3e-06 

1N7DA5        1e-23 2e-07 

1V9UVD3         8e-22 

RMSD Between Structures (Å) 

 
2FCWA

3 

2FCWA

4 

2FYLCR

5 

2FYLCR

6 

2KRIA

4 

2KNYCR1

7 

1N7DA

4 

1N7DA

5 

1V9UVD

3 

2FCWA3 0 0.29 0.84 1.16 0.43 0.77 0.96 0.68 0.38 

2FCWA4  0 0.6 3.18 0.43 0.77 1.07 0.67 0.64 

2FYLCR5   0 3.19 0.73 1.04 1.24 0.85 1.00 

2FYLCR6    0 3.89 3.01 4.62 4.27 3.47 

2KRIA4     0 0.93 1.67 0.92 0.53 

2KNYCR1

7 
     0 1.43 1.06 1.28 

1N7DA4       0 1.41 1.20 

1N7DA5        0 0.84 

1V9UVD3         0 
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1V9U (Verdaguer et al. 2004), the third LB module of VLDLR (V3) interacts with 

Human rhinovirus 2 (HRV2) viral proteins VP1. 

As a whole, the available six structures describe 9 different binding sites, since 

three complexes operate in the first mode of interaction.  

3.3.5 Creation of 3D Motif  

Nebel et al. (Nebel et al. 2007; Nebel 2006)  proposed a method in which 3D 

motif of ligand binding sites were created using their consensus atom positions. Note 

that in Nebel’s study, ‘ligand’ referred to a small molecule such as Adenosine 

triphosphate (ATP). First, ligand binding sites of proteins are aligned and compared 

against each other. A similarity matrix of these comparisons is used to cluster the 

binding sites. In each cluster a consensus 3D pattern is created by pair-wise 

superposition of the binding sites and only keeping atoms which are paired with the 

same chemical properties. Extending the existing LDLR 2D motif (Jensen et al. 2006) 

using that approach, we produce a 3D motif which describes the conserved 3D positions 

of the key atoms involved in LDLR-ligand interaction (Figure 3.12). Whereas in 

Nebel’s approach, 3D motifs are created by superposing small ligands which share 

similar structures and focusing on clusters with similar chemical properties on the 

receptor side, here we focus on superposing homologous structures and detecting local 

conservation and then selecting representative residues on the ligand side. Therefore in 

LDLR-ligand 3D motif, from the receptor, the conserved acidic residues and TRP/PHE 

are represented by their alpha carbon atoms. In addition, in order to add a constraint 

regarding interaction with the calcium ion, we include the oxygen atom of the TRP/PHE 

carboxyl group with whom it interacts. On the ligand side, the basic residue interaction 

is expressed by the side-chain nitrogen atom(s) which form(s) hydrogen bond(s) with 

acidic residues of the receptor. 
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Figure 3.12: The 3D motif is represented by spheres. The blue ones show positions of N atoms from 

the ligand. The black ones are the C-alpha atoms of the ASP and TRP and the red sphere is the O 

atom of TRP. Location of the calcium is marked by a grey sphere. Image produced using Pymol. 

The actual coordinates of the consensus atoms forming the 3D motif are 

calculated by the multiple structure alignments of these atoms using all available 

receptor-protein complexes. Here, only atoms from the receptor side are used as 

superimposition constraints. Since their 3D structures are very well conserved - their 

average RMSD is 0.28 Å - positions of all receptor atoms in the 3D motif are 

approximated by the average coordinates of the aligned atoms. On the other hand, given 

that every ligand displays a very different receptor binding sites, there is no consensus 

3D position regarding the location of the nitrogen atom(s) of the basic residue(s). 

However, since there must be specific constraints in terms of their distance and 

orientation from the receptor, in the 3D motif, we express implicitly these constraints by 

storing all the actual nitrogen positions available in our training set.  

Note that among the 9 binding sites of the available structures, we excluded that 

of 2FYLCR6 in the construction of our motif since its LA module is structurally 

different from the others as measured by an average RMSD of 2.97 Å (Table 3.2).  

3.3.6 Docking 

Docking predictions are performed using the ClusPro 2.0 docking program 

(Comeau et al. 2004), which, in addition to be freely available for academic research, 

has demonstrated best performance at CAPRI 2009 (Critical Assessment of Predicted 

Interactions) (Shen et al. 2007; Comeau et al. 2007; Kozakov et al. 2010). ClusPro 
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works by initially calculating 70,000 docking models. Then, the 1000 models with the 

best energy conformation are selected and clustered using PIPER (Kozakov et al. 2006). 

Models with the most neighbours within a 9 Å C-alpha RMSD cut-off are chosen as 

cluster representatives and are qualified by the size of their associated cluster. 

The ClusPro docking results are generated according to different constraints. For 

each category, software produces a set of predicted models ranked according to their 

cluster size. Since previous studies have highlighted the important role of electrostatic 

and hydrophobic interactions in LDLR complexes (Fisher et al. 2006; Beglov et al. 

2009; Jensen et al. 2006), we only consider predictions generated under ‘electrostatic 

favoured’ and ‘van der Waals + Electrostatic forces (VDW/elec)’ modes. In this work 

default software parameters are used. 

3.3.7 Ranking of Putative Complexes 

Docking models are scored and ranked using the fitting of the 3D motif to each 

predicted complex. 3D motif fitting is performed by rigid procrustes superimposition 

(Gower 1975; Goodall 1991)  on the binding site of the predicted LDLR-ligand 

complex using receptor atoms as constraints. We define the quality of a prediction as 

the shortest distance between the nitrogen of the basic residue of the ligand and those 

present in the 3D motif. 

3.3.8 3D Motif Evaluation Methodology 

Our 3D motif was evaluated in docking prediction task using a leave-one-

complex-out cross validation. First, a resolved 3D complex involving LDLR is selected. 

Secondly, a 3D motif is produced using all the other available LDLR complexes. 

Thirdly, the two chains involved in the complex are submitted to ClusPro which 

generates a set of putative complex models. Then, the fitting of the 3D motif to each 

model is used to score predicted complexes. Finally, the produced ranked list is 

compared with the list of models ranked according to their quality as expressed by their 

RMSD with respect to the actual resolved structure. 

3.3.9 LDLR-HNP1 Model Selection 

Using the procedure previously described, LDLR-HNP1 complex estimates are 

generated by ClusPro and ranked using our 3D motif fitting measure. Then, the best 
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models according to that score are further analysed in order to establish which ones are 

in agreement with the literature.  

Finally, the stability of the remaining modelled complexes is quantified by both 

calculating the number of intermolecular contacts and estimating pair wise interaction 

energies between the different chains involved in those complexes. Detailed information 

on residue-residue and atom-atom contacts is provided by the Contact Map Analysis 

server which is part of the software suite SPACE (Sobolev et al. 2005).  In addition, 

since previous studies (Sánchez et al. 2008; Kiel et al. 2005)  have shown good 

correlation between experimental measurements and energy calculations produced by 

the FoldX software (Guerois et al. 2002; Schymkowitz et al. 2005), its latest version, 

v3.0 beta5.1 (http://foldx.embl.de/) has been selected to evaluate binding energy 

between the two HNP1 monomers and between LDLR and each of the HNP1 chains. 

3.5 Evaluation 

3.3.10 3D Motif Validation 

Our 3D motif, displayed in Figure 3.13, is evaluated against predictions of 9 

binding sites.  Results are reported in Figure 3.13, where the number of ranks required 

to achieve 100% recall, r100%recall, is expressed as a function of the number of top 

quality predictions, t. A perfect prediction evaluation scheme would place the t best 

predictions on the t top-most positions of the ranked list, whereas the worst evaluation 

scheme would require the whole list to recall the t best predictions. 

Although Cluspro developers do not recommend judging the produced models 

according to their associated cluster size, software output shows models ranked 

according to that score which obviously influence user’s usage of these models. 

Therefore, we also show on Figure 3.13 how cluster size would perform if used to rank 

models.  

 



Chapter 3 Binding Site 3D Motif for Docking Model Evaluation Evaluation 
 

108 

 

Figure 3.13: Number of ranks to achieve 100% recall of the top predictions (or recall of top 

predictions with top positions). In the legend the complexes names are followed by C and M for 

curves based on cluster size and 3D motif method, respectively. In all cases, the curves of ranking 

produced by the 3D motif are closer to the perfect prediction in comparison to Cluspro ranking. 

Therefore, 3D motif raking improves the ranking produced by Cluspro and as a result fewer 

models are needed to recall the top quality predictions. 

In every case, ranking based on 3D motif fitting produces curves closer to the 

perfect prediction than those generated from cluster size ranking. As a consequence 

fewer models are needed to recall the top quality predictions when the 3D motif is used 

to access LDLR interaction predictions. If the LDLR-Apo(E) (2KNY) complex is 

excluded, our 3D motif allows the discovery of the 4 best quality models within a 

shortlist of 15. Usage of the cluster score would require listing 53 models to achieve the 

same outcome. The different behaviour displayed by 2KNY could be explained by the 

fact that this model is not a true complex since the fragment of Apo(E) has been fused 

with a linker to CR17 to ensure interactions between both domains (Guttman, Prieto, 

Handel, et al. 2010).  

This experiment validates the usage of the LDLR 3D motif as a good indicator 

of model quality. 
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3.3.11 Literature Study of LDLR-HNP1 Complex  

Since HNP1 has a hydrophobic and cationic face (Figure 3.14) that resembles 

the binding patch of ligands which interact with LDLR (Higazi et al. 2000; Quinn et al. 

2008; Soman et al. 2010), its mode of interaction may be similar to those previously 

studied. In addition, this area belongs to a pocket detected by both Fpocket (Le Guilloux 

et al. 2009) and CastP software (Dundas et al. 2006) (Figure 3.15). 

Regarding the hydrophobic aspect, Ala-scanning mutational study of HNP1 

revealed tryptophan26 (W26) is a key residue in direct interaction with target proteins 

and enables the peptide to form dimmers (Wei et al. 2010). In addition, either W26 or 

phenylalanine28 (F28) mutation decreases HNP1 antibacterial activity. The importance 

of W26 is further highlighted by the fact it is either conserved or replaced by an amino 

acid displaying an aromatic side chain in other human α-defensins.  

 

 

Figure 3.14: HNP1 sequence and 3D structure of the HNP1 dimer. The secondary structure of 

HNP1 is shown above the sequence.  W26 and F28 are highlighted using arrows in the sequence and 

orange sticks in the 3D structure. R24 is also marked in red. Image produced using Pymol 

(Schrödinger, LLC 2010). 

As for the cationic face, HNP1 sequence comprises four basic residues, i.e. 

arginines, which could play a role similar to the lysines present in the studied LDLR-

ligand complexes. Among these basic residues, arginine24 (R24) has been reported as 

an important residue for interacting with bacterial lipids (Y. Zhang et al. 2010).  
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Figure 3.15: The pocket detected for HNP1 dimer using CastP software (Dundas et al. 2006). The 

green spheres represent the atoms located in the pocket of HNP1. The rest of the protein is shown 

using cyan sticks. Images produced using Pymol (Schrödinger, LLC 2010). 

Although beta sheets are dominant in HNP1 and LDLR structures, the study of 

known LDLR-ligand complexes does not support the involvement of beta sheets in their 

interactions. Actually, this study suggests formation of a salt bridge between HNP1’s 

R24 and LDLR acidic residues and that either W26 or F28 plays the role of ψ in the 

minimal motif (Figure 3.9). 

3.3.12 Docking Prediction of LDLR-HNP1 Complex 

Cluspro produced a total of 43 predicted models using both the electrostatic and 

VWD/elec categories. Those models were ranked using our 3D motif and, as suggested 

by our previous experiment, only the top 15 are considered for further analysis (Table 

3.3). Since R24 and either W26 or F28 are expected to be involved in the interaction, 

only Model.002.01, Model.006.02 and Model.006.18 are in agreement with literature 

findings. 

Pairwise structural alignment reveals high similarity between Model.006.18 and 

Model.002.01 (1.61 Å RMSD). This shows that Cluspro converged towards a specific 

docking configuration from two different sets of constraints. Model.002.01 is chosen as 
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representative of this configuration. In addition, as required by the minimal motif 

(Figure 3.9), Model.002.01 and Model.006.02 have candidates for the role of ψ since 

the TRP 144 of LA4 interacts with both W26:B and F28:A of HNP1 (Figure 3.16). Both 

models position their R24 N atoms at similar locations (RMSD < 0.2Å). However, there 

is approximately a 90-degree angle between the positions of the ligands which leads to a 

13.13 Å RMSD between those two putative complex configurations. 

 

 

Figure 3.16: Proposed LDLR-HNP1 interaction models for (A) model.002.01 and (B) model.006.02. 

Structures of HNP1 and A4 are shown in cyan and red, respectively. Calcium ion is represented as 

a grey sphere. R24 creates salt bridge with the aspartic residues which are shown as black dashed 

lines. W144 of A4 and F28 and W26 of HNP1 provide the hydrophobic interactions. Images 

produced using Pymol. 
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Table 3.3: Residues involved in interaction between LDLR and HNP1 according to docking results. 

Model IDs starting by 002 and 006 are produced according to electrostatic and VDW+elec 

constraints, respectively. Contacts between residues are identified by SPACE (Sobolev et al. 2005). 

Model ID 

 

ASP Residue(s) 

(LDLR) 

ARG residue: 

Chain (HNP1) 

Hydrophobic residue: 

Chain (HNP1) 

mutagenesis studies D147,149,151 R24   W26/F28 

model.002.01 D147,149,151 R24:B W26:B, F28:A 

model.006.19 D149,151 R15:A W26:A,I6:A,L25:A 

model.006.02 D147,149,151 R24:B W26:B,F28:A 

model.006.05 D147,151 R14:B I10:B 

model.006.28 D147,151 R14:B - 

model.006.03 D147,149,151 R24:B I6:B 

model.006.12 D147,151 R15:A - 

model.006.23 D149 R15:B I20:A 

model.002.15 D147,149 R14:A W26 :B,F28:A 

model.006.17 D149,151 R14:B - 

model.006.06 D149,151 R24:B I6:B 

model.006.18 D149,151 R24:B W26:B,F28:A 

model.006.00 D147,149 R14:B - 

model.006.13 D149,151 R14:A - 

model.006.22 D147,149,151 R15:A - 

 

Complex stability analysis based on FoldX binding energy calculations (Figure 

3.17) reveals that Model.002.01 is a much more stable LDLR-HNP1 complex than 

Model.006.02. Although Cluspro energy values (-712.5 and -143.3 Kcal/mol for 

Model.002.01 and Model.006.02 respectively) are not particularly accurate (Ponomarev 

& Audie 2011) , they are in agreement with FoldX conclusions. In addition, the fact that 

Cluspro simulations based on two different sets of constraints led to the configuration 

exemplified by Model.002.01 supports the presumption of its higher stability. It is 

interesting to notice that, for this model, the strength of the LDLR-HNP1 bonds 

weakens the bond between the two HNP1 monomers (Figure 3.17). 
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Figure 3.17: Complex stability expressed by interaction energy estimated by FoldX for the 

structures. HNP1 dimer and A4 are shown by rectangle and circle, respectively. (A) HNP1 dimer 

(PDB Code: 3GNY), (B) Model.002.01, (C) Model.006.02. Energies are in Kcal/mol. 

3.3.13 Comparison with Model Selected by Cluspro 

Energy Function  

Ranking provided by Cluspro energy function selects Model.004.05 as the 

putative model. Figure 3.18 displays the alignment between Model.002.01 and 

Model.004.05. In Model.004.05, both W26:B and F28:A interact with W144 but R24 

only interacts with D151 out of the three main ASP residues of LDLR. This shows that 

the ranking provided by the energy function does not best describe a model which 

corresponds to the experimental results. Based on the energy ranking Model.002.01 is 

ranked 25 out of 84.  
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Figure 3.18: Proposed LDLR-HNP1 interaction model according to Cluspro energy function.  

Structures of A4 are shown in red. HNP structure of model.002.01 and model.004.05, are shown in 

cyan and yellow, respectively.   

3.6 Discussion 

The major objective of this investigation was to establish whether a LDLR-

HNP1 interaction can occur based upon computational models. Previous reports of i) 

the versatility of ligand recognition exhibited by the LDLR family (Blacklow 2007), ii) 

an  interaction between human α-defensins with LDLR (Nassar et al. 2002; Higazi et al. 

2000), and iii) its role in internalising ligands (such as cholesterol and amyloid-beta 

(Nassar et al. 2002; Fuentealba et al. 2010; Lazaridis 2005) led to examination of the 

putative interaction.   

The study relating to HNP1 dimer formation, conducted using SPACE (Sobolev 

et al. 2005), revealed that the structure contains 33 intermolecular contacts including 3 
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hydrogen bonds. The dimer binding energy calculation of -8.45 Kcal/mol (Figure 

3.17.A) is commensurate with several models where stable interactions occur (Kiel et 

al. 2005; Ponomarev & Audie 2011).    

The major observation from the modelling is that interactions between the 

different chains of Model002.01 are very strong, -10.59 Kcal/mol as a whole (Figure 

3.17.B).  For model.006.02, a very different scenario is depicted where the energy 

saving for interaction with the dimer is greatly diminished where the interaction with 

one monomer requires 4.75 Kcal/mol (Figure 3.17.A). This thermodynamically 

unfavourable scenario points to Model.002.01 as preferential.     

The strength of binding seen in Model.002.01 is reflected in the levels of intra-

molecular interactions. In addition to the contacts present in the dimer, binding to the 

receptor generates a further 48 contacts including 8 as hydrogen bonds and 3 as 

electrostatic interactions. 

Within the complex, an intriguing feature is the modulation of dimer interaction 

energies depending on which model is studied. A considerably weaker level of dimer 

binding strength is observed for Model.002.01 which may have ramifications for 

internalisation should this step proceed through the monomer form. In contrast, for 

Model.006.02, the binding interaction for the dimer remains strong.  

One aim of this study involved identification of the receptor binding mechanism 

for the purposes of informing the future design of synthetic HNPs to afford maximum 

internalisation. This chapter highlights the key putative contacts between HNP1 and the 

LDLR, and moreover, emphasises the potential importance of maintaining the HNP1 

dimer form for binding and potentially for internalisation. Further computational studies 

are required to clarify the mechanism of internalisation and interaction with membrane 

(Fleming et al. 2008; Lazaridis 2005).  

These insights, from computation study based drug design, provide a number of 

avenues towards novel synthetic antimicrobial peptides which can be synthesised and 

tested through conventional assays. Strengthening or weakening LDLR-HNP 

interactions may have synergistic or dysergistic effects on the two key aspects, namely 

docking and internalisation. In this vein, strengthening the links that make the HNP1 

dimer, even to the extent of forming fixed permanent bond to anchor the dimer link, 

may be an avenue to greater efficacy in some forms of antimicrobial activity. 
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3.7 Conclusion 

Since docking ranking using energy functions are unreliable and fail to 

distinguish near-native models, in this chapter we proposed a method to rank docking 

conformations based on a binding site 3D motif that describes the protein’s binding site 

environment. We showed that 3D motif is able to provide ranking which corresponds to 

experimental results. This is achieved while Cluspro docking energy function fails to 

identify a plausible model.  

The main value of 3D motifs is that they provide biological insight of protein 

interaction and can be used in real applications as shown in LDLR-HNP1 complex 

prediction. Another possible application of 3D motifs is to identify putative partners of 

proteins whose 3D structure is known. A ligand of interest can be evaluated by a 3D 

motif to see if it fits the expected binding environment. 

Despite the advantages of 3D motifs, they have some limitations: First, 

dependence on literature studies prevents their application for high throughput analysis. 

Second, the creation of a 3D motif for a set of homologous complexes assumes that the 

site of interest has high binding specificity. However, homologous proteins may bind to 

very different ligands using the same binding site (Martin 2010). Third, in this study 

selection of 3D motifs’ residues requires both sequence and structure conservation in 

terms of chemical properties. Such a constraint does not allow taking advantage of 

structural neighbours of a protein, which may have low or no sequence similarity, to 

produce useful information about their binding sites (Zhang et al. 2011; Jordan et al. 

2012). 

In Chapter 4 we will address the first two issues by proposing a framework 

suitable for high throughput protein complex prediction. This is achieved by developing 

a protein interface predictor method which considers ligand diversity at binding site. 

This predictor is then used to re-rank docking conformations. The third limitation is also 

partially addressed in Chapter 4 since it takes advantage of remote homologues.  

Moreover, this will be further investigated in Chapter 5 where structural neighbours are 

considered. 
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4  Protein Interface Prediction and its 

Application to Re-ranking Docking 

Conformations 

4.1 Introduction 

Since proteins function by interacting with other molecules, analysis of protein-

protein interactions is essential for comprehending biological processes (Shoemaker & 

Panchenko 2007). Whereas understanding of atomic interactions within a complex is 

especially useful for drug design, limitations of experimental techniques have restricted 

their availability (Reš et al. 2005). Despite progress in protein interface and docking 

predictions, there is still room for improvement. In this chapter, we propose T-PioDock, 

a framework for prediction of a protein complex 3D structure from the structures of its 

components. T-PioDock supports the identification of near-native conformations from 

3D models that docking software produced by scoring those models using binding 

interfaces predicted by T-PIP. T-PioDock is freely available for download at: 

http://manorey.net/bioinformatics/wepip/. The rest of the chapter is organised as 

follows, Section 4.2 presents the most relevant state-of-the-art methods in protein 

interface prediction (section 4.2.1) and its application to re-ranking docking 

conformations (section 4.2.2). The proposed methodology is described in details in 

section 4.3. First we investigate the principles behind T-PIP interface predictor (section 

4.3.2) and then we discuss how this prediction can be used for re-ranking docked 

conformations (section 4.3.3). In section 4.4 T-PioDock framework is evaluated which 

http://manorey.net/bioinformatics/wepip/
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is followed by further discussion and a summary of chapter in section 4.5 and 4.6, 

respectively.  

4.2 Related Work 

4.2.1 Protein Interface Prediction 

Protein-protein interaction (PPIs) is essential for the functionality of living cells. 

Alterations of these interactions affect biochemical processes which may lead to critical 

diseases such as cancer (Shoemaker & Panchenko 2007). Therefore, knowledge about 

protein interactions and their resulting 3D complexes can provide key information for 

drug design. A number of experimental techniques are available to identify residues 

involved in PPIs (Shoemaker & Panchenko 2007). Although they provide valuable 

contribution to PPI knowledge, their cost in terms of time and expense limits their 

practical use (Ezkurdia et al. 2009). Consequently, computational methods have been 

proposed to identify protein interfaces.  

As discussed in chapter 2, when the 3D structure of the query protein (QP) is 

available, integration of structural information, e.g. residues secondary structure or 

solvent-accessible surface area, allows better predictions (Ofran & Rost 2007a; Šikić et 

al. 2009). Three approaches taking advantage of these properties are seen as state-of-

the-art (Zhou & Qin 2007). ProMate combines 13 different properties, such as chemical 

component, geometric properties and information from relevant crystal structures, to 

generate a quantitative measure (Neuvirth et al. 2004). Protein interface residues are 

then predicted using a clustering process relying on mutual information. Alternatively, 

Cons-PPISP discriminates between residues using neural networks trained with 

protein’s surface sequence profiles and solvent accessibility of neighbouring residues 

(H Chen & Zhou 2005). Finally, PINUP addresses the problem using an empirical 

energy function which is based on a linear combination of side chain energy score, 

interface propensity and residue conservation (Liang et al. 2006). Despite fundamental 

differences, these three approaches display very similar performance (Zhou & Qin 

2007). However, each of them seems to capture different important aspects of residue 

interactions. As a result, a meta-predictor, Meta-PPISP, combining their scores using a 
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linear regression analysis, is able to outperform each of these individual methods in 

terms of accuracy (Qin & Zhou 2007b). 

With the increasing number of experimentally determined protein 3D structures, 

template-based approaches (Chapter 2, section 2.3.2) have become the recent focus of 

interface prediction. They are guided by two main facts. First, homologous proteins tend 

to display structurally similar interaction sites (Tsai et al. 1996; Aloy et al. 2003). 

Secondly, protein’s binding sites are evolutionarily conserved among structurally 

similar proteins (or structural neighbours) (Q. C. Zhang et al. 2010; Zhang et al. 2011; 

Konc & Janezic 2007; Konc & Janežič 2010a; Carl et al. 2008; Carl et al. 2010). Even 

remote structural neighbours have been shown to display a significant level of interface 

conservation (Q. C. Zhang et al. 2010). Consequently, template-based interface 

predictors rely on analysing proteins which are structurally similar to the query protein. 

Predictors in this category are either based on homologous template (Chapter 2, section 

2.3.2.1) or structural neighbours (Chapter 2, section 2.3.2.2). IBIS (Tyagi et al. 2012) is 

the state-of-the-art from the first category and similarly PredUs (Zhang et al. 2011; Q. 

C. Zhang et al. 2010) and PrISE (Jordan et al. 2012) are the best predictors from the 

second category. 

For each QP, IBIS (Tyagi et al. 2012) extracts homologous complexes which 

have at least 30%  sequence similarity to the QP. First, using VAST algorithm (Gibrat et 

al. 1996), QP and the homologous complexes are structurally aligned. Homologues for 

which at least 75% of their binding sites are structurally aligned with the QP are kept. 

IBIS does not remove redundant structures and will keep all homologues which meet 

the above condition. Second, a Structure-based-MSA (S-MSA) of the homologues in 

reference to the QP is build and all interface residues of homologous complexes are 

mapped on it. Third, a similarity matrix of homologues is created by comparing each 

homologue against all other homologues. For scoring two pairs of homologue, A and B, 

only positions which are marked as interfaces on the S-MSA for either A or B is used. 

The score of each position, which shows the aligned residue of A and B in that position, 

is its BLOSUM score (Henikoff & Henikoff 1992). This score takes into account gap 

penalties and is normalised to allow comparison among different pair of homologues. 

Fourth, using the generated similarity matrix the homologues binding sites are clustered 

using a pseudo-free energy function which defines the cut-off value. Therefore, each 
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cluster will have a set of binding sites which are defined to be similar. Fifth, for each 

cluster with more than one non-redundant protein (threshold of 90%), 4 scores are 

calculated: their weighted sum provides a ranking score for that cluster. These scores for 

each cluster are: (i) positional conservation in the binding site, (ii) average of total 

number of contacts (iii) position specific score matrix (PSSM) and (iiii) average 

sequence identity of the cluster members to the QP . Finally, all clusters are ranked 

based on their ranking score and the interfaces of the best ranked cluster is mapped on 

the QP.  

While IBIS prediction depends on the availability of homologues complexes, 

PredUs and PrISE take advantage of structural neighbours. PredUs, maps interacting 

residues from structural neighbours onto query proteins (QP) even if they are not 

homologous (Zhang et al. 2011). Whereas PredUs still dependents on the existence of 

structural neighbours of QP, PrISE proposes to deal with this limitation by predicting 

interface residues from local structural similarity only (Jordan et al. 2012). This is 

achieved using a repository of structural elements (SE) generated from the Protein Data 

Bank (PDB) (Berman et al. 2000). For each SE of the query protein (consisting of a 

central residues and it neighbours) a set of similar SEs are extracted from the repository. 

A weight is then assigned to them based on the local (SE similarities) and global 

(protein surface similarity) structural similarities. The central residues of the query 

protein’s SE are predicted as interface if a weighted majority of its similar SEs are 

interface residues. Although more general, PrISE displays comparable performance to 

PredUs (Zhang et al. 2011). Both methods will be further discussed in chapter 5. 

Those two approaches have significantly improved the ability of predicting 

interface residues; see section 4.4.2.2. However, they do not deal satisfactorily with the 

very heterogeneous nature of the PDB. First, the presence of duplicate complexes and/or 

homologues may bias predictions towards specific configurations, and can affect 

performance negatively. Second, confidence in the information provided by the 

interface of a structural neighbour should depend on its degree of homology with QP. 

Although PrISE acknowledges both issues, it does not address the first one (Zhang et al. 

2011). On the other hand, PredUs deals with these matters in a binary fashion. 

Complexes involving structural neighbours are clustered and a 40% similarity cut-off is 

used to choose the representatives which will inform interface prediction. Third, both 
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PrISE and PredUs are able to make prediction only if a structure is available for the QP. 

This significantly reduces their applicability. Similarly, IBIS does not address the three 

above mentioned point. In addition, since it relies on close homologues (sequence 

identity above 30%), it does not fully take advantage of templates and fails to make 

predictions for some proteins. 

In this chapter we introduce T-PIP (Template based Protein Interface Prediction) 

framework, a novel PIP approach based on homologous structural neighbours’ 

information. T-PIP addresses the above mentioned limitations by quantifying, first, 

homology between QP and its structural neighbours and, second, the diversity between 

the ligands of the structural neighbours (here, ligands refers to the interacting partners of 

proteins). Finally, predictions can be performed for sequences of unknown structure if 

that of a homologous protein is available. T-PIP’s main contribution is the weighted 

score assigned to each residue of QP, which takes into account not only the degree of 

similarity between structural neighbours, but also the nature of their interacting partners.  

4.2.2 Scoring Protein-Protein Docking Conformations 

Protein-protein docking aims to computationally predict the 3D structure of a 

protein complex using the unbound structures of its components (Halperin et al. 2002; 

Smith & Sternberg 2002; Ritchie 2008; Bonvin 2006). Since docking software produces 

100’s to 1000’s of putative models, their exploitation requires the ability to score them 

accurately (Li et al. 2003; Pierce & Weng 2007; Vreven et al. 2011). 

As discussed in chapter 2, knowledge of predicted interface residues has proved 

particularly successful (Qin & Zhou 2007a) in comparison to knowledge-based 

potentials and machine learning functions. It  has been applied to either constrain the 

initial search space of docking software (pre-filtering) (Van Dijk, De Vries, et al. 2005; 

De Vries & Bonvin 2011; Li & Kihara 2012) or score docking conformations (post-

filtering) by calculating the similarity between the interfaces of the docked models and 

the predicted ones (Qin & Zhou 2007a; Xue et al. 2010). On one hand, pre-filtering 

limits the search space from the start but is less practical to use since the constraint 

should be imposed on the algorithm of the docking method (Qin & Zhou 2007a). On the 

other hand, post-filtering can be applied to models generated by any docking software 
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and can be combined with other scoring function. As a consequence, post-filtering has 

proved more popular and practical (Qin & Zhou 2007a) .  

Experiments aimed at gaining insight into the value of using interface 

information showed that knowledge of at least 40% of interface residues is sufficient to 

significantly improve rankings (Zhou & Qin 2007) of models generated by ZDOCK 

(Chen, Li, et al. 2003). As a consequence standard interface prediction approaches, such 

as cons-PPISP (H Chen & Zhou 2005), Promate (Neuvirth et al. 2004) and HomPPI 

(Xue et al. 2011), were extended to evaluate the fit of docked proteins against their 

predicted binding sites (Qin & Zhou 2007a; Xue et al. 2010). By combining five 

interface predictors, i.e. Promate (Neuvirth et al. 2004), PPI–Pred (Bradford & 

Westhead 2005), PPISP (Zhou & Shan 2001), PINUP (Liang et al. 2006), and 

SPPIDER(Porollo & Meller 2006) into one framework called MetaPPI (Huang & 

Schroeder 2008), success rates were improved by 15% in comparison to the best 

individual predictors. DockRank (Xue et al. 2010) using HomPPI (Xue et al. 2011), 

which has a prediction performance higher than Promate (see chapter 2), has shown to 

provided better ranking than Cluspro on Docking Benchmark 3.0. However, since 

DockRank is constrained by the availability of a homologous complex containing both 

chains of the query, it fails to provide ranking for new complexes. Finally, instead of 

representing interacting interfaces as a two-patch system, SPIDER (Khashan et al. 

2012) evaluates multi-body interactions using a library of contacts containing graph 

representations of common interfacial patterns. Although SPIDER has claimed to 

outperform ZRANK (Pierce & Weng 2007), its usage is limited by the requirement of 

accurate and high resolution interfaces. 

This chapter contributes to this topic by proposing T-PioDock (Template based 

Protein Interface prediction and protein interface Overlap for Docking model scoring), a 

complete framework for prediction of a complex 3D structure. T-PioDock supports the 

identification of near-native conformations from 3D models that docking software 

produced by scoring those models using binding interfaces predicted by T-PIP.   
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4.3 Methodology  

4.3.1 Overview 

As highlighted in the latest edition of CAPRI (Fleishman et al. 2011), despite 

progress in docking predictions, there is still room for improvement. In this study, we 

contribute to this topic by proposing T-PioDock (Template based Protein Interface 

prediction and protein interface Overlap for Docking model scoring), a complete 

framework for prediction of a complex 3D structure. T-PioDock aims at supporting the 

identification of near-native conformations from 3D models produced by any docking 

software by scoring those models. T-PioDock exploits template based predictions of 

complexes’ binding interfaces to evaluate docking configurations.  

T-PioDock’s pipeline is described in Figure 4.1. The input to the system is the 

3D structures of the query proteins. First, the T-PIP module (Template based Protein 

Interface Prediction) evaluates the complexity of the protein targets –i.e. ‘trivial’, 

‘homologous’ or ‘unknown’- in terms of homologue availability in the PDB (Berman et 

al. 2000) and predicts their interfaces using the most appropriate template-based 

method. These interfaces are then passed to the PioDock module (Protein Interface 

Overlap for Docking model scoring) which exploits them to score conformation models 

produced by any docking software. Finally, those scores can be used to help at the 

identification of near-native conformations by ranking available conformation models. 
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Figure 4.1: T-PioDock pipeline.The two query proteins, shown in green and cyan, are the inputs to 

T-PIP. T-PIP evaluates target complexity and predicts their interfaces using the most relevant 

method. In the figure, the predicted interfaces are coloured in red on the query protein surface 

which is in grey. PioDock exploits these interfaces to score models produced by standard docking. 

The result is a list of docked complexes with a score (S) associated to them. 
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4.3.2 Template Based Protein Interface Prediction 

Principle  

When two protein chains form a dimer, they bind through their interaction 

interfaces. We propose T-PIP which predicts the amino acids which are involved in 

binding interactions based on the 3D structures of the dimer partners. In this study 

dimer refers to any two protein chains involved in interaction. Not only does our 

approach predict the locations of interfaces when both binding partners are known, but 

it also infers the most likely binding interface of a single protein. T-PIP module, first, 

evaluates the complexity of a protein target in terms of availability of 3D structures of 

homologous proteins and, second, applies the most relevant template based interface 

predictor. Figure 4.2.A and Figure 4.2.B describe those interface prediction pipelines 

for single and pair protein queries respectively. 

 

 

Figure 4.2: Interface prediction framework for single (A) and pair protein queries (B). A) For a 

single query, if at least one homologous complex exists, interfaces are predicted using ‘homologous’ 

otherwise ‘unknown’ is used. B) For a pair of proteins, depending on the existence of homologous 

complexes, interfaces are predicted by one or a combination of the ‘trivial’, ‘homologous’ and 

‘unknown’ methods. 
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This methodology relies on discovering interaction patterns from the analysis of 

the 3D structures of complexes involving homologs of the dimer partners, called 

‘homologous complexes’. In this work, proteins are defined as homologous if their 

sequence similarity is expressed by an                as suggested in (Xue et al. 

2011). Initially, protein targets are categorised into three categories: ‘trivial’, 

‘homologous’ and ‘unknown’. This is achieved by, searching homologues complexes of 

the query proteins in PDB (Berman et al. 2000) using BLAST (Altschul et al. 1997). If 

among their homologous complexes both QPs share at least one common complex, the 

target is considered to be ‘trivial’, in that case T-PIP exploits them as templates to 

predict both interfaces jointly (see section 4.3.2.1). If each QP possesses a set of 

homologous complexes, but none of them belongs to both sets, the target is classified as 

‘homologous’ and interfaces are predicted independently from the interaction partner 

(see section 4.3.2.2). Finally, if no homologous complex is found for at least one of the 

QP, the target is judged to be ‘unknown’. In this case, a third party PIP software, such 

as PredUs (Liang et al. 2006), is required. In this work, we use PredUs when 

homologous complexes are not available, because, not only it is one of the best 

performing methods, but also it has been implemented as a Web server which can be 

used free of charge. 

4.3.2.1 Trivial Targets 

With rapid increase of experimentally determined structures, homology 

modelling of the whole 3D structure of a dimer is becoming more and more possible. It 

has been reported (Ghoorah et al. 2011) that high quality homologous models could be 

found for 62% of the protein complexes present in the standard Protein Docking 

Benchmark 4.0 (Hwang, Vreven, Janin, et al. 2010). Consequently, template-based 

docking methods have been proposed based on common dimer complexes, i.e. dimers 

where each chain is homologous to a sequence of the query dimer (Ghoorah et al. 2011; 

Kundrotas & Alexov 2006; Kundrotas et al. 2008). For example, 66 % of complexes 

generated by HOMBACOP were categorised as either acceptable or medium-quality 

models according to CAPRI assessment criteria (Kundrotas et al. 2008).  Since these 

approaches have proved particularly accurate, for ‘trivial’ targets interfaces are inferred 

based on common complex homologs.  
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Homologous complexes of each sequence of the protein query pairs are 

extracted from the PDB using BLAST. Common homologous complexes are then 

selected and ranked by multiplying the E-values associated with the sequential 

alignments of each query chain with the homologous chain of the common complex. 

The common complex with the lower score is selected as the template from which the 

interfaces of the query chains are inferred. This is achieved by mapping the interface 

residues of the templates on the query chains according to their sequence alignments. 

4.3.2.2 Homologous Targets 

The idea behind our approach relies on the observation that interface residues 

are usually structurally conserved between evolutionary related proteins (Zhang et al. 

2011). Following extraction of homologous complexes from the PDB using BLAST, the 

3D structure of QP is structurally aligned with its homologues. In this study processing 

time is reduced by considering at most the 30 homologous complexes involving a chain 

whose E-value shows closest similarity to the QP. Alignment of multiple protein 

structures is performed by Multiprot (Shatsky et al. 2004), since it is a popular tool 

(Keskin et al. 2005; Halperin et al. 2004; Winter et al. 2006; Ogmen et al. 2005) that has 

already be used successfully in interface residue prediction (Keskin et al. 2005). Using 

this information, a structure-based multiple sequence alignment (S-MSA) is produced. 

Then, known interface residues of the homologous complexes are highlighted on the S-

MSA. Figure 4.3 shows a schematic representation of the process. In agreement with 

the CAPRI definition (Janin & Wodak 2007), an interface residue is defined as an 

amino acid whose heavy atoms are within 5Å from those of a residue in a separate 

chain. Using this multiple alignment, an interaction score is calculated for each residue 

of the query protein (see section 4.3.2.2.1). Figure 4.4 shows a detailed example of S-

MSA and the calculated interaction scores. Finally, the expected number of interface 

residues,    , is predicted from known interfaces (see section 4.3.2.2.2). The     

residues with the highest scores are then returned as defining the interaction interface. 
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Figure 4.3: Application of the T-PIP on a homologous query protein (green). First, it is structurally 

aligned with its homologous complexes. Then, an S-MSA is produced where X and I represent non-

interface and interface residues, respectively. Finally, interaction residues (red) of QP are predicted 

according to interaction scores and the estimated size of the interface. Note that residue weights are 

not shown here. 

Although this method was initially designed for predicting interface residues for 

query proteins whose 3D structure is known, it can also be applied when only the 

sequence of the query is available. In this case, an initial S-MSA is created using only 

homologous complexes of the QP. Then, the QP sequence is integrated to that S-MSA 

using ClustalW Profile Alignment command (Thompson et al. 1994) to create a 

complete MSA. 
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Figure 4.4: Example of interface prediction for ‘homologous’ target 1BA7-B. The amino acid 

sequence and the ground truth interfaces are shown at the top (‘I’ and ‘.’ represent  interface and 

non-interface residues, respectively). Actual interfaces of  homologues of 1BA7-B are show in the 

purple box. Prediction made by T-PIP is displayed below the box, where red, yellow and blue 

highlights show residues which are correctly, missed and wrongly predicted as interface residues by 

T-PIP. 3D representation of this interface is provided in Figure 4.11. At the bottom of the figure, 

three examples of T-PIP weighting calculations are displayed.  
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4.3.2.2.1 Interaction Score 

In order to identify residues likely to be involved in the dimer interaction, we 

propose a residue scoring function which relies on the S-MSA of QP and its complexed 

homologues. In principle, any QP amino acid aligned with a residue involved in a dimer 

interaction is a potential candidate. However, we express confidence in the association 

of interaction activity to a residue according to three factors: the degree of homology 

between the QP sequence and that of the protein from which the interaction is inferred, 

the nature of the ligand involved in the interaction with the homologous protein and the 

number of homologous proteins suggesting interaction. 

First, the more homologous a complexed protein, k, is to QP, the more 

informative is that protein regarding which residues are likely to be involved in the 

dimer interaction. We express this information by the query weight,   , Equation 4.1: 

 

    {

                     

                       

                                            

 Equation 4.1 

 

Where    is the E-value of protein    against QP as estimated by BLAST. The 

threshold are based on the constraints for retrieving homologues complexes (  

            ) suggested in (Xue et al. 2011).  

Secondly, since none of the homologous complexed proteins interacts with the 

query ligand, diversity of ligands has to be rewarded given that they increase 

generalisation of interaction patterns. A second weight conveys this requirement by 

penalising homologous proteins, whose ligands are similar to each other. This is 

estimated by the average sequence identity between the sequence of a ligand and all the 

other as expressed by the arithmetic mean of the pair wise E-values. Given a 

homologous complex protein,  , interacting with a ligand,   , and the other     

homologous complexed proteins interacting with their respective ligand,   , the ligand 

weight,   , is formulated as Equation 4.2: 

   {

∑  (     )
 
       

   
        

                                        

 
Equation 4.2 
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Where  (     )
 is set to 1, if  (     )

  , and  (     )
 is set to       , if 

 (     )
       . 

The    score is designed so that the presence of complex duplicates does not 

bias predictions towards their configuration. For example, if a QP has 3 complex 

homologs, A, B and C where LA is unrelated to LB and LC, but LB and LC are identical,  

          ,            and           . Therefore,         , i.e. interface 

configurations of A and B/C will have the same weight. 

The weighted score of the residue   of protein,  , is expressed by the product of 

these two weights (Equation 4.3): 

    {
       if i interacts with    
   otherwise                            

 Equation 4.3 

Finally, since it was shown that usage of non-interface information improves 

prediction performance (Zhang et al. 2011; Jordan et al. 2012), the score for residues   

of QP is calculated in (Equation 4.4) as the sum of the weights of the interface residues 

in the homologs over all the interface and non-interface residues which are 3D aligned 

with  :  

   
∑    

 
   

∑   
 
     

 
Equation 4.4 

Note that for non-interface residues the ligand which is geometrically the closest 

is used to calculate their weight   . 

4.3.2.2.2 Estimation of the Number of Interface Residues 

After calculating    for all the amino acids of QP, it is necessary to estimate the 

expected number of interface residues of its interface,    . Studies have shown that 

despite variability in ligand structures, the binding location between homologous 

structures and their ligands is conserved (Keskin & Nussinov 2007). This suggests that 

the number of interface residues between homologues should remain quite stable even 

when the binding partners vary. Therefore, T-PIP uses the weighted average number of 

interacting amino acids of all QP’s homologues (   ) to estimate the number of 

interface residues of QP (Equation 4.5): 
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     ∑  

 

   

 
Equation 4.5 

Where   is the number of residues in the QP sequence plus the number of gaps 

added to allow alignment with its homologues. Finally, once     has been calculated, 

the predicted interface is defined as the     residues with the highest scores. 

4.3.2.2.3 Comparison of Prediction to Ground Truth 

After predicting the interfaces using T-PIP and other interface predictors, their 

performances are compared against the GT of the benchmark datasets using metrics 

provided in 2.5.1.  

For each target, a GT sequence is generated using their X-ray structure: 

interacting residues are replaced by the symbol ‘I’, whereas non-interface ones are 

substituted by the symbol ‘N’. Note that interfaces are defined using CAPRI’s 

definition, i.e. all residues of a protein chain that have atoms less than 5 Å apart from 

the interacting partner. For example in Figure 4.4, on the top, the amino acid sequence 

of 1BA7-B is shown. Underneath it, the ground truth interfaces and non-interfaces are 

displayed as a sequence of Is and dots (‘I’ and ‘.’ represent  interface and non-interface 

residues, respectively). Then, each interface prediction is expressed similarly as a 

sequence of ‘N’ and ‘I’ symbols. Again in Figure 4.4, below the purple box, the 

predicted interface and non-interface are shown as a sequence of symbols. Finally, 

comparison of a prediction with the GT sequence allows calculating the TP, FP, TN and 

FN: matches between I (or N) at the same position are marked as TP (or TN), whereas 

mismatches, I in GT and N in prediction (respectively, N and I), are noted as FN 

(respectively, FP). In Figure 4.4, TP, FN and FP are shown in red, yellow and blue 

highlights, respectively, on the predicted sequence. 

4.3.2.2.4 Calculating the Significance of the Predictions 

After calculating the performance of T-PIP and other interface predictors, 

differences among them are evaluated to establish their statistical significance. This is 

achieved by calculating for each metric their associated standard deviations and P-

values. Given a mean value ( ) of metric for all the targets in a dataset, the standard 

deviation ( ) is calculated as below: 
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   √
 

 
∑        

 

   
 

Where   is number of targets in the dataset and    is the calculated performance 

value for target i. A smaller standard value shows that the distributions of the data are 

closer to the mean value. Standard deviation can be used to measure the uncertainty and 

large standard deviations can show that differences are not significant among different 

datasets. 

P-values are calculated between T-PIP and each predictor (on different metrics) by 

applying a two-tailed t-test with a null hypothesis of “there is no relationship between 

two performances of the predictors”. A higher P-value indicates that the probability that 

the observed difference among two phenomena has occurred by chance is higher. P-

values smaller than 0.05 are considered as a statistically significant threshold (Darnell et 

al. 2007). Therefore, any P-value smaller than 0.05 shows that the two dataset do not 

happen by chance and the null hypothesis can be rejected. P-values are calculated using 

the T-TEST function of Excel. 

4.3.3 Protein Interface Overlap for Docking Model Scoring 

PioDock scores docking conformations according to their consistency with 

interfaces predicted by T-PIP. Given the putative docking conformation of a complex 

A-B, the model is assigned a score on the basis of the overlap between its interface 

residues and those predicted for each of its components, i.e. A and B. We define the 

complex overlap score of A-B,                  , as the average between two 

overlap scores (overlap) calculated for A and B separately: 

                  
                 

 
 Equation 4.6 

Where the overlap score for A in regard to B,         , is calculated using the 

following formula proposed by Kuo et al. (Kuo et al. 2011): 

         
                                   

√                                       
 Equation 4.7 
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Where                   and                  in the numerator of the formula 

represent, respectively, the sets of the residue in the interfaces of docked model and the 

ones predicted by T-PIP. While                   and                  in the 

denominator represent the number of residues in the interface of docked model and the 

ones predicted by T-PIP, respectively. 

               scores of native complexes should equal to 1, whereas 

completely incorrect conformations should be assigned a value of zero. In this study, 

               score was used to rank all conformational models generated by 

docking software for a given complex. When experiment was conducted to evaluate the 

PioDock module on its own, actual target interfaces were used instead of their 

predictions.   

Note that when no interface prediction could be performed for one of the two 

docking partners, the overlap score for that protein is equal to zero and 

               score is calculated using only the overlap score of the other protein. 

4.3.3.1 Evaluation of Docking Model Scoring 

In order to allow any evaluation it is necessary to have some gold standard or 

ground truth. However, comparison of two docked models is far from being a 

straightforward task since CAPRI has to use three differences measures to assess the 

docking model quality (Lensink & Wodak 2010): l-rmsd measures the RMSD between 

the backbones of the two complexes ligands, i-rmsd restricts its evaluation to interface 

residues, whereas      is the fraction of native contacts within the interface. Since      

can only discriminate between relatively good configurations – all models failing to 

predict a single interface residue receive a score of 0, only i-rmsd and l-rmsd are used in 

this study. The normalised Pearson's chi-squared statistic (             ) (see chapter 

2, section 2.5.2 for details) was used to compare between a gold standard ranking of 

models and rankings generated by those methods. A lower              represents a 

ranking which is more similar to the ranking of the gold standard. Perfect ranking would 

return a value of 0. 
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4.4 Evaluation 

4.4.1 Datasets and Tools 

Three standard benchmark datasets were used in this study: Ds56unbound (Janin 

& Wodak 2007), Docking Benchmark 3.0 (DBMK3.0) (Hwang et al. 2008) and 

Docking Benchmark 4.0 (DBMK4.0) (Hwang, Vreven, Janin, et al. 2010) . While 

Ds56unbound has been our training set, DBMK3.0/4.0 has been used for evaluating the 

interface predictors and docking model ranking approaches. These datasets contain 

high-resolution protein structures both in their unbound and bound forms.  

Ds56unbound is comprised of 56 unbound chains generated from 27 CAPRI 

targets, T01~T27 (Janin & Wodak 2007). In total, it contains 12173 residues including 

2112 interacting ones. This dataset is used to perform evaluation of all interface 

prediction methods of interest. Since interface residues are not explicitly provided in 

DS56unbound, they were generated from the interface residues in their bound form. The 

process is illustrated in Figure 4.5. First, interface residues are detected on the bound 

complexes. Then, the unbound sequences are aligned with the bound sequences. Finally, 

the interfaces are mapped from the bound sequences onto the unbound ones. 

 

Figure 4.5: Generation of ground truth interface residues. a) Interfaces residues (blue spheres) are 

identified on the bound structure (cyan). The interaction partner is in red. b) The unbound and 

bound sequences are aligned to infer interfaces of the unbound structure. Mapping is shown by 

blue rectangles. c) Inferred interfaces are shown as blue spheres on the unbound structure (cyan). 
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DBMK3.0 and DBMK4.0 were originally introduced for the evaluation of 

protein docking methods. DBMK3.0 contains 124 unbound-unbound targets and 309 

protein chains, whereas DBMK4.0 is an extension with 53 new targets. Targets are 

classified into three categories - rigid body, medium difficulty and difficult - based on 

their degree of conformational change between the bound and unbound forms. These 

datasets contain essentially dimers, but there are also a few trimers and tetramers. Since 

there is no agreed methodology for the evaluation of predicted interfaces when dealing 

with complexes involving more than two chains, those oligomers were excluded from 

our experiments to ensure fair and consistent comparisons. Moreover, in order to allow 

comparison with PredUs, we only considered a subset of DBMK3.0, where the chains 

share at most 40% sequence similarity and their lengths are above 50 amino acids. As a 

consequence, we produced two subsets of DBMK3.0 and DBMK4.0, i.e. DS120 and 

DS236 (See Additional files 1 and 2 for details), with 120 and 236 dimer targets 

respectively. The most promising interface prediction methods were further evaluated 

on those datasets and docking experiments were conducted on DS236. 

In this study, initial docking predictions were produced using the ClusPro 2.0 

docking server (Comeau et al. 2004), which performed best at CAPRI 2009 (Kozakov et 

al. 2010). For a pair of proteins, Cluspro generates hundreds of conformational models 

usually containing at least one near native model. Although these models are evaluated 

by an energy-based scoring function and clustering, rankings performed according to 

those scores have proved unreliable (Esmaielbeiki et al. 2012; Xue et al. 2010). 

4.4.2 Evaluation of Interface Prediction Method 

4.4.2.1 Evaluation of the Interaction Score 

All chains from Ds56unbound were processed by our interface prediction 

framework. Following initial homolog search where the Ds56bound complexes were 

excluded from the BLAST results, homologous complexes were returned for 51 chains. 

According to T-PIP, 27 chains were classified as ‘trivial’ (Ds27unbound), 24 as 

‘homologous’ (Ds24unbound) and 5 as ‘unknown’(Ds5unbound). Table 4.1 provides 

detailed performance of our system using standard measures. As expected, the more the 

method is able to exploit homology, the better is the interface prediction. Moreover, the 
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table reveals that T-PIP prediction for ‘homologous’ targets is quite conservative: it 

displays relatively low recall value compared to precision. Figure 4.6 illustrates 

qualitatively those results by displaying representative predicted interfaces compared to 

ground truth. 

Table 4.1: Detailed performance of the WePIP framework. DSxunbound: this means x chains out of 

the 56 unbound chains are solved by this specific predictor. 

Predictor & Categories Precision Recall F1 Accuracy MCC AUC 

T-PIP DS56unbound 53.9 48.5 49.6 84.0 41.1 72.9 

 

Trivial (DS27unbound) 68.8 60.5 63.2 87.0 56.0 77.1 

Homologous (DS24unbound) 43.3 35.6 38.2 82.3 28.8 70.1 

Unknown (DS5unbound) 23.6 45.5 30.1 75.8 19.4 63.2 

Homologous + Trivial 

(DS51unbound) 
56.8 48.8 51.5 84.8 43.2 73.6 

 

 

Figure 4.6: Interface predictions generated by the T-PIP framework using either a) Homologous, b) 

Trivial or c) Unknown. On each PDB target, true interface residues are coloured in red, whereas 

false positives and false negatives are shown in blue and yellow respectively. Corresponding F1 

scores are also provided. 

In Figure 4.7, we provide the receiver operating characteristic (ROC) curves of 

T-PIP interface predictions for the six homologous targets represented in Figure 4.6.A. 

To draw these curves all predicted interface residues are ranked based on their T-PIP 
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score where higher values represent higher possibility of a residue to be part of the 

interface. Then, only the top scored T-PIP residue is selected as prediction and the FP 

and TP values according to GT are calculated. This will be the first point on the ROC 

curve. Then, we select the top two scored T-PIP residues, calculate TP and FP and plot 

the point on the curve. This process continues until the last step which contains all the 

protein’s residues.  Based on results in Figure 4.7, first, curves are in agreements with 

model ranking based on F1 score. Second, accuracy regarding the number of estimated 

residues in the interface is highly correlated with the AUC. Finally, actual numbers of 

residues tend to be close to the curve’s optimal cut-off point (Schisterman et al. 2005). 

This point is located on the ROC curve where the distance is the largest to the random 

diagonal. This suggests there is scope for improving the estimation of expected 

interacting residues. 

 

Figure 4.7: Receiver operating characteristic of T-PIP interface predictions for the six homologous 

targets of Figure 4.6.A. The dotted line shows the curve which would have been produced by a 

random predictor. Each point on the curves represents the number of FP and TP in comparison to 

the GT based on the top n scores provided by T-PIP.  For each protein, the actual number and the 

number of interface residues predicted by T-PIP are shown by squares and circles, respectively. 
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In order to validate the formulation of the weights used by T-PIP, interface 

predictions for Ds24unbound were also estimated by setting those weights to 1. As 

shown in Table 4.2, results confirm the added value provided by our weighted schema. 

While usage of the query weight,   , only provides modest improvements when 

compared to a non weighted approach, the proposed ligand weight,   , offers a more 

significant increase of performance. Finally, when both weights are combined, most 

performance indicators improve further. These results confirm that taking into account 

both homology of QP and ligands leads to better interface predictions.   

Table 4.2: Validation of weights used by Homologous module of T-PIP on DS24unbound. 

Homologous (DS24unbound) 

Query 

weight 
Ligand 

weight 
Precision Recall F1 Accuracy MCC AUC 

1 1 40.6 32.5 37.0 81.6 25.5 70.3 

xk 1 40.8 32.7 38.7 82.4 26.2 70.4 

1 yk 42.4 34.6 37.3 82.6 28.1 70.9 

xk yk 43.3 35.6 41.7 82.3 28.8 70.1 

 

4.4.2.2 Evaluation of Prediction Performance 

In the first set of experiments, performance of state of the art methods was 

performed using the Ds56unbound dataset. In addition, to evaluate interface prediction 

without knowledge of the QP structure, we also produced results where the QP 

sequence, instead of its structure, was aligned with an S-MSA of its homologues. Those 

results are labelled as T-PIPQPseq+S-MSA. Since the IBIS server may provide several 

interfaces for a given protein, performance is calculated here by selecting the interface 

with the highest score. Note that two targets could not have their interface predicted 

using IBIS. 

Results presented in Table 4.3 confirm that template based approaches, i.e. IBIS, 

PrISE, PredUs and T-PIP, outperform feature based ones. Moreover, T-PIP displays 

either best or second best results competing with PrISE (Jordan et al. 2012) and PredUs 

(Q. C. Zhang et al. 2010; Zhang et al. 2011), depending on the metric considered. 

Comparison between standard T-PIP and T-PIPQPseq+S-MSA suggests that 

availability of QP structure only marginally increases performance and is, therefore, not 
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required for interface prediction. Nevertheless standard T-PIP is used in all remaining 

experiments. 

Table 4.3: Evaluation of interface prediction methods using the Ds56unbound dataset. 

Predictor 

(DS56unbound) 
Precision Recall F1 Accuracy MCC AUC 

Promate 28.7 27.3 28.0 76.6 14.0 62.7 

PINUP 30.4 30.1 30.2 76.9 16.4 60.0 

Cons-PPISP 37.4 34.5 35.9 79.5 23.8 71.2 

Meta-PPISP 38.9 24.0 29.7 81.1 20.2 71.5 

IBIS  48.2 29.3 34.4 82.5 27.9 - 

PrISE 43.7 44.0 43.8 81.2 32.6 75.5 

PredUs 43.3 53.6 47.9 73.2 30.4 72.9 

T-PIP 53.8 48.5 49.6 84.0 41.1 72.9 

T-PIPQPseq+S-MSA 53.4 48.1 49.2 83.9 40.7 72.4 

 

Further tests were conducted on the most promising approaches, i.e. IBIS, 

PrISE, PredUs and T-PIP, using DS120 and DS236 datasets. Note that, for DS120, 

PredUs and IBIS failed to process 1 (1ZK0-B) and 9 proteins, respectively. For DS236, 

IBIS did not make any prediction for 32 proteins and T-PIP for 2 proteins (1H20-A and 

1QFD-A do not have any structural neighbour). Since PredUs used DS120 chains for 

training, its performance on an independent dataset is likely to be lower (results on 

DS236 were not available). When using the PRISE server, query chains were removed. 

As shown in Table 4.4, T-PIP also displays the best performance on DS120 and 

DS236.  Interestingly, T-PIP displays similar performance on Ds56unbound, DS120 and 

DS236 even though DS236 contains more structures from the difficult and medium-

difficulty categories. Table 4.5 displays T-PIP results in each of those categories. As 

expected, better performance is achieved when targets have fewer conformation 

changes upon binding.  
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Table 4.4: Comparisonofinterfacepredictors’performanceonDS120andDS236. 

Predictor & dataset Precision Recall F1 Accuracy MCC 

T-PIP DS120 52.6 56.1 52.5 85.4 45.1 

PredUs DS120 47.3 58.2 48.5 69.4 24.4 

PrISE DS120 38.5 48.9 40.9 80.7 31.2 

IBIS DS120  42.6 37.4 37.4 83.8 29.9 

T-PIP DS236 53.2 55.3 52.1 85.3 44.8 

PrISE DS236 41.2 47.5 41.5 81.0 32.0 

IBIS DS236 40.9 36.9 36.2 83.6 28.8 

 

Table 4.5: T-PIP performance on DS120 and DS236 according to DBMK categories. 

Predictor & Categories Precision Recall F1 Accuracy MCC 

T-PIP DS120 52.6 56.1 52.5 85.4 45.1 

 Rigid Body (86chains) 57.1 61.3 57.3 86.7 50.7 

 Medium-Difficulty (18 chains) 42.0 50.8 44.5 84.5 35.9 

 Difficult (16 chains) 42.9 34.0 35.8 79.2 26.2 

T-PIP DS236 53.2 55.3 52.1 85.3 44.8 

 Rigid Body (156 chains) 56.8 59.4 56.2 86.7 49.5 

 Medium-Difficulty (44 chains) 45.1 52.2 47.0 85.6 39.3 

 Difficult (34 chains) 46.9 37.6 38.5 78.4 28.6 

 

Statistical significance of T-PIP’s results is first evaluated by providing standard 

deviations of predictors presented in Table 4.4. Table 2.1. reveals that in general PrISE 

displays the lowest standard deviations while T-PIP has the highest. Associated P-

values are presented in Table 4.7, where figures highlighted in red displays a P-

values>0.05). Superiority of T-PIP’s performance is shown to be generally statistically 

significant in comparison to PrISE and IBIS’s.   

However, comparison with PredUs is less straight forward since, although 

accuracy and MCC metrics show T-PIP’s performance is significantly better, precision, 

recall and F1 measures do not display any significant difference. Based on the results in 

table Table 4.4 T-PIP has the best performance except in recall where PredUs displays a 

higher value. However, comparison of the P-values of T-PIP and PredUs for recall 

metric in Table 4.7 shows that the difference is not statistically significant. There is a 
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high chance of 60% that better performance of PredUs compared to T-PIP in terms of 

recall metric has happened randomly.  

As a conclusion, T-PIP performs significantly better than PrISE and IBIS. 

Regarding PredUs, out of the 5 metrics, no statistically significant difference can be 

found for 3 of them (Precision, Recall and F1). However, statistically significant better 

performance in terms of Accuracy and MCC suggests that T-PIP is a slightly better 

predictor than PredUs. 

Table 4.6: Standard deviations of interface predictors’ performance on DS120 and DS236. 

Numbers in the table display the standard deviation for every metric across the specified dataset. 

Predictor & dataset Precision Recall F1 Accuracy MCC 

T-PIP DS120 0.32 0.32 0.31 0.13 0.35 

PredUs DS120 0.31 0.29 0.26 0.17 0.29 

PrISE DS120 0.22 0.21 0.19 0.10 0.21 

IBIS DS120  0.36 0.35 0.33 0.13 0.37 

T-PIP DS236 0.32 0.32 0.30 0.12 0.34 

PrISE DS236 0.23 0.22 0.20 0.11 0.22 

IBIS DS236  0.36 0.34 0.32 0.12 0.36 

Table 4.7: Significance of T-PIP predictions: comparison with other predictors on DS120 and 

DS236. Numbers represent P-values. Those highlighted in red are not judged significant (P-

values>0.05).  

T-PIP, Predictor 

& dataset 
Precision Recall F1 Accuracy MCC 

T-PIP, PredUs   

DS120 
0.17 0.60 0.27 2.11E-14 1.43E-06 

T-PIP, PrISE 

DS120 
6.6E-05 0.04 0.0006 0.003 0.0002 

T-PIP, IBIS  
DS120  

0.02 2.98E-05 0.0004 0.38 0.001 

T-PIP, PrISE 

DS236 
3.72E-06 0.0023 9.84E-06 6.01E-05 2.46E-06 

T-PIP, IBIS 
 DS236  

0.0001 6.58E-09 8.87E-08 0.13 1.69E-06 

 

Finally, experiments also confirm that homology information benefits interface 

prediction. As seen in Table 4.8, predictions for the ‘trivial’ category are a whole class 

above the others. Moreover, interfaces for the ‘homologous’ category display higher 

quality than those for the ‘unknown’ category: although recall performance remains 
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stable (the method used for processing the ‘unknown’ category, PredUs, has a 

particularly good recall, see Table 4.4), F1 and accuracy measures are better by around 

10%, precision by 15% and MCC by a third.  

Table 4.8: T-PIP performance on DS120 and DS236 according to target complexity. In the DSx 

notation, x in the number of chains in the category. 

Predictor & Categories Precision Recall F1 Accuracy MCC 

T-PIP DS120 52.6 56.1 52.5 85.4 45.1 

 

Trivial DS63 64.9 67.5 66.0 89.1 60.5 

Homologous DS48 36.5 43.7 38.2 82.9 29.6 

Unknown DS9 31.6 41.8 34.5 73.3 19.2 

T-PIP DS236 53.2 55.3 52.1 85.3 44.8 

 

Trivial DS128 65.2 63.8 62.3 88.6 57.0 

Homologous DS93 39.7 44.9 40.3 82.5 31.1 

Unknown DS13 32.3 46.3 36.6 74.1 22.1 

 

Processing of ‘homologous’ targets relies on extracting the relevant interacting 

residues from the interfaces of homologous proteins. In order to evaluate this process, 

for each protein from the 93 ‘homologous’ targets defined in Table 4.4, the F1 score 

that would have been obtained using simply the interface of a homologue is computed. 

This shows how much the interface of a given homologue complex is representative of 

the solution binding site. In addition, for a given target, the average of its homologues 

F1 and its T-PIP F1 score is calculated. Figure 4.8 shows the quality of T-PIP 

predictions in respect to target homologues. Note that query proteins are identified using 

their association to their target employing the following notation: ABCD:WXYZ-E, 

where ABCD is the PDB code of the complex target and WXYZ-E is the query protein 

PDB code-chain, e.g. 1ZM4:1XK9-A. 
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Figure 4.8: Interface F1 of‘homologous’targetsinrespecttoavailablehomologues. Horizontal line 

connects the maximum and minimum F1 calculated for homologues of a given target. Average 

homologue F1 and T-PIP F1 are shown by yellow diamonds and red squares, respectively. 
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In most cases the quality of T-PIP predictions is above average which confirms 

its ability to extract relevant information from a homologue set. Moreover, the figure 

also reveals that T-PIP improves on the best homologue interface in four cases: 

2SIC:1SUP-A, 1BKD:2II0-A, 1BKD:2II0-A and 2O3B:1ZM8-A.  

We analyse some of the targets in more detail. First, we focus on a couple of 

cases where T-PIP performed extremely badly. Figure 4.9 and Figure 4.10 explain 

prediction failures for 1ZM4:1XK9-A and 2FJU:2ZKM-X, respectively. Query chains 

are displayed in grey using solid surface representation. Representatives of interacting 

partners of proteins homologous to QPs are displayed as cartoons. Red, yellow and dark 

blue patches on solid surfaces represent correctly, missed and wrongly predicted surface 

residues, respectively. In the 1ZM4:1XK9-A case, as illustrated in Figure 4.9 with two 

representatives of the interacting partners of proteins homologous to the QP, the target 

has two distinct interfaces one of which corresponds to the interface involved in the 

complex of interest. Unfortunately, T-PIP selected the other one in its prediction.  

 

 

Figure 4.9: Example of failed interfaces predicted by T-PIP for 1ZM4:1XK9-A. Query chain is 

displayed in grey solid surface representation. Two representatives of interacting partners of the 

QPs homologues are displayed as cartoons (in cyan and green colours). Yellow and dark blue 

patches on solid surfaces represent missed (FN) and wrongly (FP) predicted surface residues, 

respectively. 
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In the 2FJU:2ZKM-X case, Figure 4.10, the actual interface of interest does not 

have a single representative among homologous complexes. As a consequence, T-PIP is 

not able to make any relevant prediction and suggests the most consensual binding site. 

 

 

Figure 4.10: Example of failed interfaces predicted by T-PIP for 2FJU:2ZKM-X. Query chain is 

displayed in grey solid surface representation. Four representatives of interacting partners of the 

QPs homologues are displayed as cartoons (in cyan, orange, green and pink colours). Yellow and 

dark blue patches on solid surfaces represent missed (FN) and wrongly (FP) predicted surface 

residues, respectively. 

Figure 4.11, shows a successful case, 1AVX:1BA7-B, where T-PIP extracts 

binding information from a set of 14 homologous complexes – only 3 representatives 

are illustrated – and, using appropriate weightings, manage to predict quite accurately 

the interface of the target. 
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Figure 4.11: Example of successful interfaces predicted by T-PIP for 1AVX:1BA7-B. Query chain 

is displayed in grey solid surface representation. Three representatives of interacting partners of 

proteins homologous to QPs are displayed as cartoons (in cyan, green and pink). Red, yellow and 

dark blue patches on solid surfaces represent correctly (TP), missed (FN) and wrongly (FP) 

predicted surface residues, respectively. In A) cyan, green and pink patches correspond to the 

actual binding sites of the interacting partners of 1BA7-B‘shomologues. 

4.4.3 Evaluation of Ranking Docking Conformations 

After generation of possible docking conformations, model scoring allows 

identifying the most plausible conformations. This is evaluated by ranking those models 

and evaluating how close those rankings fit an ‘ideal’ ranking or ‘ground truth’ (GT) 

according to the configuration of the native complex. Two Capri criteria (Lensink & 

Wodak 2010), i.e. interface (i-rmsd) and ligand (l-rmsd) rmsds, were used to produce 

alternative ground truths for the ‘homologous’, DS93, and ‘trivial’, DS128, subsets of 

DBMK4.0 as defined in Table 4.8. Since the interfaces of ‘unknown’ category are 

predicted by a third party server, we have not considered them in this experiment. As 

seen in the ‘x-rmsd’ column of Table 4.9 and Table 4.10, where ranking generated by 

one GT criterion is evaluated against the other criterion’s ranking, although their 

             are not 0, they are quite low which means they agree quite well with 

each other. Those values are used as reference scores in further evaluations. Note that 

comparison to DockRank (Xue et al. n.d.) was not performed since their web server was 

not available at the time.  
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Table 4.9: Performance of docking model rankings according to ground truth criterion (DS93 

dataset) based on average             . ‘x-rmsd’ is calculated by evaluating ranking generated 

by i-rmsd (/l-rmsd) criterion against ranking produced by l-rmsd (/i-rmsd) criterion. 

Ground  
truth  

criterion  

Ranking method applied to DS93 
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i-rmsd 5.2 11.6 30.0 39.5 43.3 49.1 60.7 61.4 67.8 

l-rmsd 6.0 12.5 29.7 39.5 44.2 50.6 63.9 64.5 70.9 

 

In a first experiment, T-PioDock was compared to other state-of-the-art methods 

using the 52 targets of DS93. In addition, we evaluate the PioDock module by applying 

it on the ground truth interfaces of the target complexes (Interfaces+PioDock) instead of 

their T-PIP predictions. Table 4.9 displays the average              between the GT 

and rankings produced by each method. First, although Interfaces+PioDock is not based 

on interface prediction, but actual interfaces, its              is worse than the 

reference scores (here, it is the double). This can be explained by the fact that since 

docking interfaces are treated as two sets of interface residues without any pairwise 

knowledge (patches), which is the output of current interface predictors, they could 

perfectly overlap even if the position of a binding partner was rotated around the centre 

of the patches. Second, the table demonstrates that T-PioDock is superior to all other 

methods whatever the criterion used to generate the GT rankings. Moreover, relative 

performances between other methods are in agreement with previously reported results 

(Pierce & Weng 2007; Kuo et al. 2011; Zhao et al. 2011; Khashan et al. 2012). 

Table 4.10: Performance of docking model rankings according to ground truth criterion (DS128 

dataset) based on average             . ‘x-rmsd’ is calculated by evaluating ranking generated 

by i-rmsd (/l-rmsd) criterion against ranking produced by l-rmsd (/i-rmsd) criterion. 

Ground 
truth 

criterion 

Ranking method applied to DS128 

x-rmsd 
Interfaces 

+PioDock 
T-PioDock 

i-rmsd 5.9 13.6 23.3 

l-rmsd 6.4 15.0 23.4 
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In a second experiment, T-PioDock is evaluated on DS128, see Table 4.10. As 

expected, better interface predictions for this ‘trivial’ dataset leads to better quality of 

rankings. 

In order to have some insight regarding ranking as a mean of identifying near 

native configurations,  Figure 4.12 displays the i-rmsd of the best produced docking 

model versus the i-rmsd of the model ranked number one by T-PioDock and 

Interfaces+PioDock on DS93 and DS128. First, the figure reveals the heterogeneous 

quality of the best docking model generated for a given target. On this set, the i-rmsd 

varies between an excellent 0.6 Å to a very poor 17.0 Å with a 4.9 Å average and a 

large standard deviation of 3.7 Å. Moreover, 13 targets did not have a single model 

below a 10 Å i-rmsd. Second, this figure shows good correlation between the quality of 

the best docking model and the ability of both T-PioDock and Interfaces+PioDock to 

detect that model, correlations of 0.65 and 0.81 respectively. A similar pattern is 

obtained using l-rmsd as GT. 

 

Figure 4.12: Correlation between the best model produced by docking and the best ranked model 

according to Interfaces+PioDock and T-PioDock. Each square point represents the i-rmsd of the 

best produced docking model versus the i-rmsd of the model ranked number one by T-PioDock. 

Each + point displays the i-rmsd of the best produced docking model versus the i-rmsd of the model 

ranked number one by interface+T-PioDock. 

Since the quality of the best docking model is very unequal, it is interesting to 

quantify how it affects model ranking by T-PioDock. In order to study this, best models 

from the ‘homologous’ target set were clustered using K-means clustering into three 



Chapter 4 Protein Interface Prediction and its Application to Re-

ranking Docking Conformations 

Evaluation 

 

150 

groups, i.e. good, average and bad, after normalisation. In Table 4.11, the average 

             per group shows that T-PioDock produces significant better ranking 

when better quality model is available. This suggests that progress in docking would 

lead to better performance by T-PioDock. 

Table 4.11: T-PioDock ranking performance (average             ) based on the quality of the 

best model. 

Ground 
 truth 

criterion 

Quality of the best model 

All Good Average Bad 

i-rmsd 30.0 23.7 35.7 39.4 

l-rmsd 29.7 21.5 37.1 47.6 

 

Finally, since one of the goals of T-PioDock is to recognise near native models 

among all predictions, we conducted an experiment where the actual target structure 

was included in the list of possible models. After ranking, for each target, the relative 

rank of the native pose among all produced models was extracted. The histogram in 

Figure 4.13 shows that the native pose tends to be present in the top of the ranking lists. 

For example, 16% of the native models are within the 5 first positions. Actually, the 

frequency of finding the native model can be interpolated by a decreasing monotonic 

polynomial. 
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Figure 4.13: Histogram of the relative T-PioDock rank of the native configuration among all 

docked models. Each blue bar shows how many times T-PioDock ranks the native configuration 

within the specified interval (two successive values on the x axis). The first bar shows that for 15 

targets T-PioDock placed the native configuration in the top 5 of its ranking list, whereas the 

second bar shows that 9 times it is placed between the 6
th

 and 10
th

 position. Those frequencies can 

be models by a decreasing monotonic polynomial. 

4.4.4 T-PioDock Tool 

T-PIP and PioDock software are freely available from 

http://manorey.net/bioinformatics/wepip/. T-PIP program accepts the pdbcode or 

sequence of the protein of interest and predicts its interface. PioDock, accepts a set of 

protein- protein docking models and their T-PIP predicted interfaces as input and 

outputs a ranking list of docked models with their corresponding scores. 

4.5 Discussion 

This study has confirmed that despite sustained activity in the field, the 

prediction of a complex 3D structure remains a challenge. First, docking software may 

not be able to produce any near native conformation among the generated set of putative 

models. Second, identification of the best conformations remains a difficult task. In this 

work, we have contributed to this topic by offering a complete pipeline, T-PioDock, for 

scoring docking models according to the overlap of their components’ predicted 

interfaces.  

http://manorey.net/bioinformatics/wepip/
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Experiments evaluating the proposed scoring process, PioDock, on actual 

interfaces (Interfaces+PioDock system) showed that the treatment of docking interfaces 

as patches instead of sets of residue interactions affects the quality of the model 

selection process: two patches can perfectly overlap even if all binary residue 

interactions are incorrect. Unfortunately, there is currently no promising alternative 

since current state of the art in interface prediction is not able to work at such a level of 

details even if this has started to be explored (Khashan et al. 2012; Esmaielbeiki et al. 

2012). Although this is an important issue, the study has revealed that the main source 

of scoring inaccuracy resides with the quality of predicted interfaces, see Table 4.10. 

Exhaustive evaluation of interface prediction methods demonstrated that T-PIP 

generates best performance; moreover comprehensive comparison of state of the art 

methods for ranking docking models supported its integration within the T-PioDock 

framework since it outperformed all its competitors. However, as Table 4.3 and Table 

4.4 showed, performance of interface predictions remains unsatisfactory: most metrics 

returns values within the 40-60% range, with the notable exception of ‘accuracy’, 

~85%, which benefits from the low ratio between interface and non-interface residues. 

Although there is no doubt that the sustained growth of the PDB (Berman et al. 2000) 

will benefit template based methods and T-PIP in particular, Figure 4.8 also highlighted 

that T-PIP prediction generally does not outperform the best available homologue 

interfaces. This may be explained by the fact that residues are selected independently 

from each other, whereas homologues present interfaces where residues belong to a 

consistent interaction network. While experiments reported in Table 4.3 have 

demonstrated the superiority of template based methods over feature based ones, one 

would expect that analysis of local features could complement initial template based 

prediction by bringing local contextual information. Another approach, which 

potentially could improve significantly interface prediction, is based on detection of the 

best homologue. To support this hypothesis, Table 4.12 shows performance where 

either the best homologue or the average score for all homologues of a given target has 

been selected. The best homologous protein for each target is selected according to the 

highest F1 score calculated compared to the ground truth (GT). ‘Average homologues’ 

is calculated by averaging all targets average homologue which is simply the average of 

all the scores among homologues of that target. These results not only confirms that T-
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PIP performs significantly better than the ‘Average homologues’ method, but also 

suggest that if it was possible to select automatically the best homologous protein, 

interface prediction would improve significantly.  

Table 4.12: Results based on best homologues and average of homologues compared to T-PIP 

performance. 

Homologous DS93 Precision Recall F1 Accuracy MCC 

Best Homologous 56.6 62.2 56.8 86.6 49.9 

T-PIP 39.7 44.9 40.3 82.5 31.1 

Average  homologues 29.8 34 29.4 79.6 19.7 

 

4.6 Conclusion 

In this chapter, we have presented a novel framework, T-PioDock, for prediction 

of a complex 3D configuration from the structures of its components. It aims to support 

the identification of near-native conformations by scoring models produced by any 

docking software. This is achieved by exploiting predictions of complexes’ binding 

interfaces. 

Exhaustive evaluation of interface predictors on standard benchmark datasets 

has confirmed the superiority of template base approaches and has showed that the T-

PIP methodology performs best. Moreover, comparison between T-PioDock and other 

state-of-the-art scoring methods has revealed that the proposed approach outperforms all 

its competitors.  

Despite our contribution to the field, accurate identification of near-native 

conformations remains a challenging task. Although availability of 3D complexes will 

benefit to template based methods such as T-PioDock, we have identified specific 

limitations which need to be addressed. First, docking software are still not able to 

produce native like models for every target. Second, current interface predictors do not 

explicitly refer to binary residue interactions which leaves ambiguity when assessing 

quality of complex conformations. To address the second limitation, in the next chapter 

the concept of binding site transitivity is introduced for selection of best homologue 
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through interface alignment. This will result in an interface prediction which also 

describes the contact environment. 
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5 Structural-transitivity of Protein 

Binding Sites for Protein Interface 

Prediction  

5.1 Introduction 

Protein interface prediction is important to gain insight into biological processes 

and deciphering signalling pathways. In chapter 4, T-PIP interface predictor was 

introduced. Its evaluation revealed better performance than other state-of-the-art 

methods. We demonstrated that T-PIP performance could be improved by mapping the 

best homologue interface onto the query protein (QP). Therefore, in this chapter we 

introduce ICPIP (Iterative Closest Point Interface Predictor) which uses the binding site 

transitivity concept to detect the best homologue. This is achieved by structural 

interface comparison of the first QP homologues and the binding site of the homologues 

partner of the second QP. 

The remainder of this chapter is organised as follows. Section 5.2 introduces 

interface predictors based on structural similarities. Then in section 5.3, the binding site 

transitivity concept and the ICPIP method are introduced in details. Then, the results of 

evaluation are presented in 5.4 and further discussed in 5.5. Finally the chapter is 

concluded in 5.6. 

5.2 Related Work 

Proteins interact with each other using their binding sites to perform a specific 

function. Therefore, knowledge of their interface residues is important for drug design. 
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As discussed in chapter 2, many methods have been developed for predicting protein 

interfaces. But with the increase of experimentally determined structures, template-

based predictors (see chapter 2) have become the main focus of current prediction 

methods. Two main trends have emerged in using structure as template : the first one 

uses structures of protein homologous since they tend to display structurally and 

physico-chemically similar binding sites (Aloy et al. 2003; Tsai et al. 1996). IBIS one of 

best performing in this category, structurally aligns homologous complexes with at least 

30% sequence similarity to the query protein (QP). A sequence and structure similarity 

matrix is then used to cluster binding sites and ranks are given to each cluster based on 

criteria such as average of contact or conservation.  

These methods are limited to the availability of homologues; therefore the 

second trend in template-based predictions uses structural neighbours: proteins which 

are structurally similar to the QP. Protein structures have shown significant level of 

interface conservation not only among evolutionary related proteins but also between 

remote structural neighbours (Q. C. Zhang et al. 2010). Therefore, methods in this 

category cover more QPs since they are limited to the availability of homologuous 

structures. PredUs (Q. C. Zhang et al. 2010; Zhang et al. 2011) and PrISE (Jordan et al. 

2012) are the top performing methods in this category. PredUs detects structural 

neighbours by global structural alignments using Ska (Petrey & Honig 2003) program. 

Comparing to QP structure, only structural neighbours with structural distance (Yang & 

Honig 2000) (a measure of structural similarity) smaller than a specific threshold are 

kept which allows capture of both evolutionary related and remote neighbours. Among 

these proteins the ones involved in PDB or PQS complexes are ranked based on their 

structural similarity to the QP. For each structural neighbour, they are first aligned on 

top of the QP and second their interfaces are mapped onto the QP residue. A vector 

contact map is associated for each alignment, where each cell corresponds to a residue 

on the QP. Every time an interface residue is mapped on the QP, its dedicated cell in the 

contact map is increased by the sequence identity between the QP and the structural 

neighbour. To avoid over counting highly similar structures, protein chains are clustered 

using a 40% sequence identity. If two structural neighbours belong to the same cluster 

and their interacting partners also cluster together, then only the structure with is 

structurally more similar to the QP is kept. Once all structural neighbours are mapped 
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on the QP, the sum of the individual contact maps are used to build the contact 

frequencies map which shows the predicted QP interfaces (Q. C. Zhang et al. 2010). 

PredUs server (Zhang et al. 2011) uses contact frequencies along with SVM to predict if 

a surface residue belongs to an interface or not. For each surface residue and its 14 

spatially nearest surface residue, their contact frequency and solvent accessible surface 

areas (ASA) are inputs to the SVM. SVM creates a hyperplane to separate interface and 

non-interface residues where each residue will receive a score for its probability to be an 

interface. Any QP residue with score above zero is predicted as interface by default. 

While PredUs, uses global structural similarities, PrISE (Jordan et al. 2012) focuses on 

local interface similarities. Therefore, while PredUs is limited to the availability of 

structural neighbours, PrISE can perform predictions for a larger number of QPs. For a 

given QP, PrISE detects structurally similar interfaces by searching through a repository 

of structural elements (SE) generated from PDB complexes. A SE is defined by a 

central surface residue along with its neighbouring surface residues (any residue with an 

atom distance of ≤1.5 Å from central residue atoms). Each SE is represented by four 

features: (1) name of the central residue of the SE, (2) ASA of the central residue of the 

SE, (3) ASA of all the residues in the SE and (4) a histogram of atoms in the SE. 

Therefore, the numbers of SEs of a QP corresponds to the number of its surface 

residues. For each SE of the QP, similar SEs are detected from the repository. Two SEs 

are similar if: (1) they are from different proteins, (2) their central residues are the same 

and (3) the difference between their ASAs and also the ASA of their central residues are 

smaller than a threshold. The central residue of a QP’s SE is predicted as interface if a 

weighted majority of the central residues of similar SEs are interfaces; otherwise they 

are labelled as non-interface. The weights are calculated using local (SE similarities) 

and global (protein surface similarity) structural similarities. The combined global and 

local similarities have shown better results than the use of each one individually. 

Finally, in PrISE any QP residue with score above 0.34 is predicted as interface by 

default. Both PrISE and PredUs have shown comparable performance.  

In Chapter 4, we introduced T-PIP which uses homologues structures but unlike 

IBIS which only focuses on close homologues with sequence identity of 30%, T-PIP 

also investigates remote homologues. Similarly to PredUs, T-PIP mapping of 

homologues’ interfaces onto the QP is scored by sequence similarity of the QP to its 
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homologue. However, the T-PIP score also takes into account the nature of the 

interacting partner. Finally, unlike IBIS, PredUs and PrISE which rely on QP structure, 

T-PIP can predict interfaces of a QP whose structure is not available. Although 

prediction methods taking QP sequence as input have been previously developed (see 

Chapter 2), they do not take advantage of structural template in their prediction and 

consequently do not perform as well.  

T-PIP has shown to perform better than IBIS, PrISE and PredUs (except in 

recall). These methods along with T-PIP predict a residue as interface or non-interface 

by calculating a consensus score generated from all available templates. In Chapter 4, 

we demonstrated that detection of the best homologue and mapping its interface 

residues on the QP could potentially improve T-PIP performance by ~35% in F1 score. 

‘Best homologue’ is a homologue or structural neighbour whose binding site is similar 

to the ground truth measured as the highest F1 score. 

 Protein interfaces have shown to have similar architecture and properties even 

among structurally and functionally diverse proteins (Tsai et al. 1996; Gao & Skolnick 

2010). These similarities have been used by methods to explore interface predictions 

(e.g. PrISE and PredUs) and protein-protein interaction (PRISM(Ogmen et al. 2005)) 

prediction. They have shown that structural geometric alignment of interfaces can 

capture these similarities. Inspired by these methods, in this chapter we propose ICPIP 

(iterative closest point interface predictor) an interface prediction method based on 

detection of the best homologue. This is achieved by local interface comparison 

between a QP homologue and the interacting partner of its QP pair homologues. ICPIP 

relies on an algorithm aiming at minimising the distance between two clouds of points, 

i.e. ICP (iterative closest point) (Besl & McKay 1992), to detect potential interface 

similarities which enables the detection of the ‘best homologue’. This computer 

graphics algorithm has already been applied to protein structure alignment (Ellingson & 

Zhang 2012; Xu et al. 2007; Bertolazzi et al. 2010) and protein function predictions 

(Ellingson & Zhang 2011). Xu et al. (Xu et al. 2007) have used ICP to perform global 

structure alignment among proteins. Comparison to well-known structural alignment 

methods such as VAST (Gibrat et al. 1996), DALI (Holm & Sander 1993) and CE 

(Holm & Sander 1993) has shown comparable results in the number of aligned atoms 

and RMSD obtained. ICP has also been used for protein interface alignment in order to 
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predict protein functions. Indeed, protein function can be inferred from binding site 

similarity to a protein with a known function (Ellingson & Zhang 2011). Moreover, a 

recent ICP-based interface alignment method, TIPSA (Ellingson & Zhang 2012), has 

shown to perform favourably as other state-of-the-art interface alignment methods such 

as SiteEngine (Shulman-Peleg et al. 2004), SiteBase (Gold & Jackson 2006) and 

MultiBind (Shulman-Peleg et al. 2008) which are based on geometric hashing. 

 In the next section, we will first discuss the ICPIP framework and then we will 

investigate the use of ICP for binding site structural alignment. We will also compare 

ICPIP results to T-PIP and discuss how the combination of these methods can 

significantly improve the prediction. 

5.3 Methodology  

5.3.1 Overview 

In nature a protein (called A) can form a complex with another protein (called 

B), by mimicking the binding site pattern of the known binding partners of protein B 

(Martin 2010). We call this concept ‘binding site transitivity’ and it is the main idea 

behind ICIPIP methodology. Examples of binding site transitivity in nature are shown 

in Figure 5.1 and Figure 5.2. Figure 5.1 (top figure) displays the final target complex 

1FLE:EI which is an enzyme-inhibitor and can be modelled using binding site 

transitivity concept. Assuming that the complex structure 1FLE:EI is unknown, 

1EAI:AC and 2Z7F:EI can be used to model it. Complex 1EAI:AC consists of 1EAI:A 

(in green), which is homologous to 1FLE:E, and its binding partner IEAI:C (in red). 

Similarly, complex 2Z7F:EI consists of 2Z7F:I (in cyan), which is homologous to 

IFLE:I, and its binding partner 2Z7F:E (in pink). Since the binding site of 1EAI:A 

(green) has a similar structural pattern to the binding site of 2Z7F:E (in pink), structural 

alignment of those two sites allows to display the configuration of a putative complex 

formed by interaction between 1EAI:A and 2Z7F:I. As these chains are homologues to 

the target chains (1FLE:E and 1FLE:I), the structure of 1FLE:EI can be inferred using 

the configuration of 1EAI:A-2Z7F:I by superimposition of the unbound structures of 

1FLE:E and 1FLE:I, i.e. 9EST:A and 2REL:A, respectively (not displayed on the 

image), on their homologues. 



Chapter 5 Structural-transitivity of Protein Binding Sites for Protein 

Interface Prediction 

Methodology 

 

160 

 

 

Figure 5.1: Binding site transitivity in nature: enzyme-inhibitor. 1FLE:EI is the final target 

modelled using binding site structural alignment of 1EAI:AC and 2Z7F:EI. Homologous chains are 

shown with similar colours. Note that 1EAI:C (in red) and 2Z7F:I (in cyan) have only 20% 

sequence similarity. Similarly, 1EAI:A (in green) and 2Z7F:E (in pink) have 40% sequence 

similarity.  

Another example is shown in Figure 5.2 with a ras-kinase complex, where the 

target is 1HE8:AB (top figure). 1HE8:AB has been categorised in the difficult category 

of DBMK4.0. Binding site of 3IHY:A (in green) in interaction with 3IHY:E (in red) can 

be structural alignment on 1LFD:C (in pink) binding site to create the target model. The 

PDB code of the unbound structure of, 1HE8:A and 1HE8:B are 1E82:A and 821P:A, 
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respectively.

 

Figure 5.2: Binding site transitivity in nature: Ras-kinase. 1HE8:AB is the final target modelled 

using binding site structural alignment of 3IHY:AE and 1LFD:CB. Homologous chains are shown 

with similar colours.  

ICIPIP is inspired by this concept of binding site transitivity which is 

schematically illustrated in Figure 5.3. The assumption is that protein A1 and B1 have 

been shown to interact but the complex that they form is unknown. The aim is to use the 

binding site transitivity concept to model the structure of the complex of A1-B1. In 

order to achieve this, known complexes of A1-ligand and B1-ligand are investigated 

looking for  binding site similarities. Note that here ligand refers to interacting partner 

rather than a small molecule. Let’s assume that A1-F and B1-G are complexes the 

binding sites of which display structure similarities. In this example, interface of A1 is 

structurally similar to interface of G (interfaces circled in red: ‘a’ and ‘g’ in Figure 5.3). 

Therefore, if ‘a’ is superposed on top of ‘g’ a configuration of the structure of the 

complex A1-B1 can be proposed. In this example, complex A1-B1 can also be 
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generated by structurally aligning F interface on B1 interface since they are structurally 

similar.  

 

Figure 5.3: Binding site transitivity concept. The aim is to model A1-B1 complex using the binding 

transitivity concept. Available complexes of A1-ligand (here A1-F) and B1-ligand (here B1-G) are 

used.  . The binding site of A1 and G are shown by red and orange circles and are named ‘a’ and 

‘g’, respectively. Binding sites ‘a’ and ‘g’ are structurally similar so they can easily be superposed 

on top of each other. By keeping the whole complexes on both sides during the superposition 

process, the final complex A1-B1 can be deduced.  

The example illustrated in Figure 5.3 is the simplest case. In practice A1 and B1 

may have several interfaces used to interact with many different chains and also several 

complexes of A1-ligand and B1-ligand can exist. As a consequence, more elaborated 

interface comparison is required. In addition, it is not always possible to find complexes 

involving A1-ligand and B1-ligand. Therefore, homologues complexes of A1 (called 

Ai) and B1 (called Bj) should also be considered. In such cases where several Ai-ligand 

and Bj-ligand complexes are available the detection of the most similar binding sites 

requires more detailed comparison. Therefore, if binding sites can be compared and the 

most similar pairs can be distinguished, the best homologues of A1 and B1 can be 

identified and used to model A1-B1. This is the principle followed by ICIPIP.  

Therefore, ICIPIP uses the binding site transitivity concept to detect the best 

homologue which can be used to model the complexes. The steps of finding 

homologues complexes of the QP are exactly the same as T-PIP. But once homologues 
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complexes are found, instead of using all complexes, ICIPIP attempts to identify the 

best homologue which should lead to better interface prediction accuracy as shown in 

Table  4.12. Binding site transitivity assists the detection of the best homologue.  

To explain ICPIP pipeline in details, we refer to a simple schematic example 

(Figure 5.4). The aim of ICIPIP is to predict the interfaces for query protein A and B. In 

this example we only discuss the interface prediction for A since the same method can 

be repeated for B. Also, it should be noted that ICIPIP requires as input two QP chains - 

binding site transitivity would not make sense if there was a single chain input. In 

addition homologues complexes should be available for both QP chains.  

To predict interfaces of A in Figure 5.4, first, for each pair of query proteins, A 

and B, homologous complexes are extracted as described in Chapter 4. For simplicity in 

this example only two homologues are considered for each query protein. Homologues 

of A and B are denoted respectively as Ai and Bj. The interacting partners of the two 

homologous proteins of A (i.e. A1, A2) and B (i.e. B1, B2) are represented in solid 

coloured shapes. Second, based on binding site transitivity concept if the interfaces of 

A1 and A2 (here a1, a2 and a3) resemble to one of the interfaces of the binding partners 

of either B1 or B2 (here pb1, pb2 and pb3), then that interface can be used to model Ai-

Bi complex which will eventually result in a prediction of the A-B complex. In addition, 

the resulted Ai-Bi allows identifying the homologue the binding site of which has the 

most similarity to the final target.  

To detect if two binding sites are similar each individual interface of Ai (a1, a2 

and a3) are structurally aligned on each interface of the interacting partners of Bj (pb1, 

pb2 and pb3) (not shown in the figure). In this example this will result in 9 different 

pair-wise interface alignments. Note that Ai interfaces are first mapped on A and then 

the structural alignment takes place. Details about the structure alignment are provided 

in section 5.3.2.  

Third, to detect the best alignment of interfaces, each aligned pair of interfaces is 

scored and a ranking list of all pairwise interfaces is generated (not shown in the figure). 

Details of the scoring and ranking are provided in section 5.3.3. The best interface 

alignment will allow identifying the best homologue which will then be used to predict 

interface residues of A.  In this example, the superposing of a1 and pb1 has the best 

score since they have the most structure similarity (as shown qualitatively on Figure 
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5.4). Therefore, the homologue for A (here A1) belonging to the first ranked pairwise 

alignment (here a1 and pb1) is predicted as the best homologue. Finally, the interface of 

the best predicted homologue is mapped onto the QP, i.e. A and is used as predicted 

interfaces of ICIPIP. To detect the best homologue for B this process is repeated by 

aligning interfaces of Bj with those of the interacting partners of Ai.  

 

 

Figure 5.4: QP pair homologous complexes and their binding sites. A and B represent the QP pair. 

Ai and Bj (i,j=1,2) are homologues of A and B, respectively. Their interacting partners are 

displayed in solid coloured shapes. Interfaces on Ai in interaction with its binding partner, denoted 

as ai (i=1,2), are shown by a red circle. Interfaces on the binding partners of Bi, denoted as pbj 

(j=1,2,3)are shown by an orange circle. Here, the aim is to predict the interfaces of A. To achieve 

this ICIPIP structurally compares all interfaces of ai to all interfaces of pbj. The best alignment will 

point at the best homologue of A. The interfaces of the best homologue are mapped on A and are 

considered as the predicted interface for A. 

To summarise, Figure 5.5 displays the ICPIP pipeline for predicting the interface 

of QP1. In order, to predict QP2 interfaces the same pipeline is repeated but this time 

the order of the input QPs is changed. A consequence of such a scheme is that ICPIP 

predictions are limited to QP pairs where homologous complexes are found for both 

interaction partners. 
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Figure 5.5: ICPIP Pipeline for Prediction of QP1 Interface. First, homologues complexes of QP1 (in 

green) is detected and their interfaces are extracted (QP1Int is the collection of these interfaces). 

Concurrently, homologues complexes of QP2 (in cyan) are detected and the interfaces of the 

binding partners of these homologues are extracted (QP2PInt is the collection of these interfaces). 

Then, each interface in QP1Int is structurally aligned on all interfaces in QP2Pint resulting in 

QP1Int*QP2Pint pairwise alignments. These pairwise alignments are then scored and a ranking list 

is created (called ICPIP ranking list). The first pairwise alignment in the list is selected as the best 

alignment (here QP1IntBest- QP2PIntBest). The homologue to which QP1IntBest is associated is 

considered as the best homologue (called ICPIP hit) and its interface (which is QP1IntBest) is 

mapped on QP (shown as red patches). 

In section 5.3.2 we first discuss how the interface alignment is performed. Then 

in section 5.3.3, we detail the scoring method used for evaluating the alignments and 

selecting the best possible homologue. In this chapter ‘ICPIP hit’ refers to the best 

predicted homologue which has the first rank in ICPIP ranking list of structurally 

aligned interfaces. Also, ‘best homologue’ refers to the homologue whose F1 score 
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according to the ground truth (GT) is the highest among all the homologues of a specific 

target.  

5.3.2 Interface Structural Alignment 

5.3.2.1 ICP Concept 

To perform interface structural alignment we have used ICP (Besl & McKay 

1992). ICP is a technique to minimise the distance between two sets of unlabelled point 

clouds through two steps of association and registration. For each point in the first point 

cloud, ICP looks for the closest point on the second set of point cloud (association). 

Once the points on both clouds are associated to one another, a rotation matrix and a 

translation vector are calculated based on a mean square error function to optimally 

align the two sets of points (registration). These two steps are repeated till changes in 

the root mean square error is below a certain threshold or pre-defined number of 

iteration is reached. Since the root mean square error corresponds to RMSD, in this 

chapter we simply call it RMSD. Figure 5.6, displays the iterative concept behind ICP 

for two clouds of points, M and S, coloured in blue and red. The green lines represent 

the calculated association from the previous step (except in step0 which is the initial 

association), while the pink lines show the new associations. ‘Rot’ and ‘Tran’ are the 

optimal rotation and translation matrices for each step which allow the subject (Si) to 

move closer - as defined by the associations - to the model (Mi). 
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Figure 5.6: Iterative concept of ICP algorithm. Here, a 4-step iteration is shown. Two clouds of 

points, M (the model) and S (the subject), are coloured in blue and red. Rot and Tran are the 

optimal rotation and translation transformations in each step. For each point in Si, ICP associates 

it to the closest point on M. In step0 the initial association between point clouds are shown by green 

lines. This allows the calculation of Rot1&Trans1 which results in S moving closer to M (shown as 

S1 in step1). In Step1,2 and 3 pink lines show the new associations while the green line is the 

association from the previous step. In step3, RMSD reaches its minimum and ICP stops. Taken 

from(Wang 2012) 

5.3.2.2 Improvements to ICP 

To target the limitations of ICP (discussed below) improvements have been 

made to the standard ICP algorithm. First, an initialisation stage is considered before 

performing the standard ICP. Second, the association step of the ICP was edited to only 

perform unique and partial correspondences between the point clouds and also to detect 

outliers. These two improvements are discussed in details in section 5.3.2.2.1 and 

5.3.2.2.2, respectively.  
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5.3.2.2.1 Initialisation Stage 

ICP is a deterministic method whose final result depends on the initial alignment 

and can get stuck in a local minimum (Ellingson & Zhang 2012). To address this issue, 

it was proposed to run the algorithm many times each time changing its initialisation:  

that is the centre of mass of the two objects of interest are superposed and a large 

number of initial rotation states are generated (Besl & McKay 1992). Since this strategy 

has proved efficient, we decided to adopt it by introducing an “alignment initialisation” 

stage before performing ICP. Figure 5.7, displays the complete pipeline used in ICIPIP 

for protein interface alignment.  The input to this pipeline is a pair of protein interfaces, 

IA and IB, which are going to be structurally aligned. The “alignment initialisation” 

stage is shown as a red box in Figure 5.7 and is as below: 

For each pair of protein interfaces, IA and IB, we first create an interface vector. 

This vector is a directed vector from the centre of mass of each protein to the centre of 

mass of the interface calculated using the c-alpha atoms only. The two directed protein 

interface vectors, VA and VB, are aligned which allows an initial overlap of IA and IB 

interfaces. Since generating a large number of rotation states in 3D space is complex 

and time consuming, we have used Principal Component Analysis (PCA) which 

identifies the significant variations in the dataset for generating a smaller number of 

initial samples. Thus, the initial aligned interfaces using the interface vectors are 

projected on a 2D plane perpendicular to VA (IA’ and IB’ represents projected IA and 

IB). Using PCA for both IA’ and IB’ the first and second Principle Component vectors 

(PCa1 and PCa2 for IA’, PCb1 and PCb2 for IB’) are calculated. Initially IB is rotated 

so that PCa1 is aligned with PCb1 and consequently PCa2 and PCb2 are also aligned. 

Let’s call this state of IA and IB as initial alignment. Once an initial alignment is 

created (outputted from the top red box in Figure 5.7) then ICP is used to optimally 

align IA and IB (green box in Figure 5.7). But as suggested by Besl & McKay (Besl & 

McKay 1992) several initial alignments are required to avoid getting stuck in local 

minima. Therefore, to generate the next new initial alignment state, the previous initial 

alignment IB is rotated by     around VA (small red box on left side of Figure 5.7). 

This process is repeated      times (covering 360º around the VA axis). The RMSDs 

from the 36 different runs of ICP are compared and the lowest one is selected as the 

final alignment of the interfaces (Final step in Figure 5.7). As discussed above the 
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association stage of ICP (green box in Figure 5.7) has also been improved which is 

discussed below. 

 

Figure 5.7: Protein Interface Alignment Pipeline. The inputs to this pipeline are two point clouds of 

protein interfaces (IA and IB) which need to be structurally aligned. Alignment initialisation (top 

red box): interface vectors (VA and VB are calculated for IA and IB, respectively). Then VB is 

aligned on VA and consequently IB is overlapped with IA. IA and IB are projected on a plane 

perpendicular to VA and PCAs are calculated. IB is rotated so that PCAs of IA and IB are aligned. 

The output of this staged in called initial alignment. To create several initial alignments (left red 

box) IB is rotated by 10° around VA and this process is repeated 36 times. Interface Alignment 

(green box): ICP is used to perform interface alignment using initial alignment of IA and IB. but 

prior this, outliers are detected and removed from the alignment stage.  Point association is 

performed using the Hungarian algorithm. Then registration is performed. Once alignment is 

performed the RMSD is stored. Finally, following 36 initial alignments of IA and IB and 36 runs of 

interface alignment, the best alignment with the lowest RMSD among the 36 is kept as the final 

result. 
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5.3.2.2.2 Unique Association and Outlier Detection 

For each initial alignment, the interfaces, IA and IB are aligned using ICP 

approach (The green box in Figure 5.7). However, the association step of the standard 

ICP does not provide a unique correspondence for each 3D point, i.e. one point on IA 

can be matched to several points on IB. In addition, ICP is not able to perform partial 

alignment. This means that if IA and IB should only partially overlap, ICP still attempts 

to associate all points of IA with IB, even ‘outliers’. Those two limitations of ICP affect 

negatively alignment quality. 

To deal with these issues we have used the Hungarian algorithm (Kuhn 1955; 

Munkres 1957) which was initially developed to solve unique assignment problem. The 

Hungarian algorithm finds the minimum cost of assigning jobs to a set of workers 

where there are as many jobs as workers. More formally, considering a matrix the rows 

of which correspond to workers and column to jobs, each cell (i.j) represents the cost of 

the i-th worker doing the j-th job. The Hungarian algorithm associates all workers to all 

jobs minimising the total cost. It also enforces that only one unique job is associated to 

each worker. Therefore, all jobs will be performed by different workers. In ICP, the 

rows and columns are each point in the point cloud of interface IA and IB and the costs 

correspond to the distances between each two points of the point cloud of IA and IB.  A 

limitation of the standard Hungarian algorithm is that it does not support partial 

assignments: registration requires two point sets of the same size. To overcome this 

limitation, the Hungarian algorithm was extended for ‘rectangular problems’, i.e. where 

the input is a     matrix, m≠n. It finds k independent elements (          ) that 

corresponds to the minimum cost (Bourgeois & Lassalle 1971). Figure 5.8.A gives a 

schematic view of how the Hungarian algorithm deals with the assignment problem.  

The numbers of blue and green points are identical. On the right side of Figure 5.8.A,  

standard ICP may associate one data point to several data points (red arrows) while 

using the Hungarian algorithm (left side) only unique associations are produced. Figure 

5.8.B left image shows that the rectangular Hungarian algorithm can be applied to 

associate subset of the data points while standard ICP on the same data (right image) 

associates all points (red arrows). .  However, in cases such as the one showed in Figure 

5.8.A, where the tails of the cyan and green data points are considered as outliers, the 

rectangular Hungarian still tries to associate them because the two sets have a similar 
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number of points. Therefore, those outliers need to be detected before performing the 

Hungarian algorithm. A solution is to prevent their assignment in the     matrix, by 

assigning them a prohibitive cost. In that case, the Hungarian algorithm will leave them 

out because of their high impact on the overall cost function. An example of this case is 

shown in Figure 5.8.C. where the detected outlier points are not considered during the 

association stage. So far ICP with Hungarian algorithm have been only used for unique 

association of four atoms (Ellingson & Zhang 2012). Moreover, it does not deal with 

either rectangular Hungarian or outlier removal. 

To benefit from the rectangular Hungarian algorithm, we created a     matrix 

where   and   corresponds to the number of points in IA and IB, respectively. The 

cells of this matrix represent the distances between each point pair from IA and IB.  

In order to detect outliers before starting the Hungarian algorithm, for each point 

on IA the nearest neighbour distance to IB is calculated. Then, the standard deviation of 

these distances is calculated and any point with a distance above two standard 

deviations is considered as outliers. To avoid their assignment in the Hungarian 

algorithm they are assigned a distance of Infinity in the     matrix. These outliers are 

not removed from the whole process. They are estimated at each iteration of ICP, where 

they are not considered in the calculation of the rotation and translation matrix.   
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Figure 5.8: Hungarian Algorithm for Registration. Two point clouds points are shown in green 

circles and blue rectangles. A. The number of points is identical in the two point clouds. On the left, 

unique associations using ICP along with the Hungarian (ICP+Hungrian) is shown. On the right, 

the same association is generated by standard ICP where red arrows show that one point can be 

associated to several points. B. On the left, ICP+rectangular Hungarian allows unique association 

between point clouds with unequal numbers of points.  On the right, standard ICP associates all the 

points. C. On the left, outliers in the example in A are detected and are left out from the association 

process, while on the right, standard ICP associates all data points even outliers (red arrows). 
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For ICP we have used an available Matlab package (Kjer & Wilm 2010) which 

was further edited to include the rectangular Hungarian algorithm (Cao 2008) . In this 

work ICP iteration was set to 100. 

5.3.3 Detection of the Best Homologue 

As discussed previously, to detect which A homologue is more likely to 

correspond to the real interface, Ai interfaces (here a1,a2 and a3) should be structurally 

compared against the interacting partners of Bj (here pb1, pb2 and pb3). In the example 

of Figure 5.4, there would be 9 combinations. In the previous section, we discussed how 

to generate the best 3D alignment of two interfaces with the lowest RMSD. While 

alignment comparisons between different configurations involving the same interfaces 

is relatively straight forward, comparisons between pairs of totally different aligned 

structures are more complex. For example in Figure 5.4, we need to use some metric 

allowing to express that the aligned pair of a1 and pb1 is a better alignment than a1 and 

pb2. Unfortunately, RMSD alone is not appropriate to judge the quality of alignments 

involving different sets of points. For example, a RMSD of zero can be achieved by 

aligning only two points. Balance between the number of aligned residues and RMSD 

can be express by a score that considers their ratio. Such score ( ) (Equation 5.8) has 

been used in previous studies (Krissinel 2012; Krissinel & Henrick 2004) for 

calculating the quality of protein structure alignments. 

 

  
        

 

             
 

Equation 5.8 

 

Where         ,    and    represent number of aligned interfaces between 

interface A and B, number of points in interface A and number of points in interface B, 

respectively. But a drawback of this score is that it does not take into account the size of 

the interfaces. For example, aligning two interfaces of size 10 and two interfaces of size 

20 with similar RMSD will give the same   score. While in our algorithm, conservation 

between larger interfaces accounts for more binding site similarity. In addition, in the 

same example if RMSDs were different then again RMSD would have been the criteria 

for comparing the two sets.  
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Therefore, to overcome these limitations, we propose an adjusted score in 

Equation 5.9.  

 

   
        

 

               
 

Equation 5.9 

 

where       is equal to               . To reduce the effect of RMSD 

and giving more weight to         , RMSD to the power of 1 is used.  Going back to 

the example of two interfaces of size 10 and two interfaces of size 20, with similar 

RMSDs the interface with size 20 will be the winner. This is in agreement with the fact 

that larger binding sites are more likely to be biological (Tyagi et al. 2012). Also, when 

the RMSDs are different; removing the power 2 of RMSD balances the effect of RMSD 

based on the size of the dataset. Once the    score of all pairs of aligned interfaces is 

calculated, the highest score represents the best alignment. In the concept of binding site 

transitivity, the interface of homologue Ai (a1 in Figure 5.4) should correspond to Bi 

partner interface (pdb1 in Figure 5.4) in terms of shape and size to allow an interaction 

between Ai and Bi. In other words, two proteins interacting with the same protein at the 

same location, should show some degree of similarity in their interfaces. Therefore, 

before calculating the    score, the pairwise alignments which have shown poor 

structural similarity (RMSD> 4Å) or dissimilar interface sizes (             

             > 1.5) are rejected. Eventually, based on    scores, ICPIP provides a 

ranking list of all the possible pairwise alignments, where the first rank corresponds to 

the ICPIP prediction of the best homologue called ICPIP hit.  

5.4 Evaluation 

5.4.1 Evaluation of Best Homologue Detection 

ICP was used to detect the best homologue on DS93 dataset from Chapter 4. 

This dataset was categorised as ‘homologous’ by T-PIP and results showed that 

selection of best homologue in this category can improve the interface prediction. Since 

ICPIP is based on analysing the homologues of two query chains, out of 93 chains in 

DS93 only 80 chains (from 40 different targets) could be processed. This new subset is 
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called DS80 and is used in this study to evaluate prediction performance. DS80 was 

processed by ICPIP and for all the 80 targets their corresponding ICPIP ranking list was 

generated. The first experiment evaluates how well ICPIP can detect the best 

homologues. This is performed by using the relative rank of the best homologue of each 

target as extracted from its ICIPIP ranking list. As mentioned above best homologues 

can be detected by its best F1 score in comparison to the ground truth. Note that in order 

to obtain a meaningful comparison only target with more than 12 homologues were 

kept. The histogram in Figure 5.9 shows that the best homologue tends to be present in 

the top of the ranking lists. For example, for 21 targets the best homologue is positioned 

in the top 20% of ICIPIP ranking list. Actually, the frequency of finding the best 

homologue can be interpolated by a decreasing monotonic polynomial. 

 

 

Figure 5.9: Histogram of the relative ICPIP rank of the best homologue in the ranking list. Each 

blue bar shows how many times ICIPIP ranks the best homologue within the specified interval (two 

successive values on the x axis). The first bar shows that for 11 targets ICIPIP placed the best 

homologue in the top 10 of its ranking list, whereas the second bar shows that 10 times it is placed 

between the 10
th

 and 20
th

 position. Those frequencies can be modelled by a decreasing monotonic 

polynomial. 

In a second experiment, we evaluate the quality of the ‘ICIPIP hit’ by comparing 

the rank of the ICPIP hit in the ranking list of homologues based on ground truth. The 

results show that in 43% of the cases, ICIPIP hit is located in the top 5 based on ground 

truth ranking list. To visualise these results, Figure 5.10 shows F1 score of ICPIP hit in 

comparison to the best, worse and average F1 score of all the homologues for a specific 

target. In 70% of the cases ICPIP score is equal of above the average F1 score. In 
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addition, in 20 cases ICPIP hit is the best homologue. These results confirm that ICPIP 

can detect good homologues for a reasonable number of targets. 
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Figure 5.10: Interface F1 score of DS80 targets in respect to available homologues. Horizontal line 

connects the maximum and minimum F1 calculated for homologues of a given target. Average 

homologue F1 and ICPIP F1 are shown by yellow diamonds and blue circles, respectively. 
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5.4.2 Performance Evaluation 

Now that ICPIP has shown to perform well in detection of the best homologues, 

its performance was compared to other state-of-the-art methods. As described above to 

predict a QP interfaces, ICPIP hit interface is mapped on the QP. ICPIP was evaluated 

on DS56unbound (Table 5.1), DS120 (Table 5.2) and DS236 (Table 5.2). Since ICPIP 

can only be used for QP pairs from the ‘homologous’ category, which are 80, 40 and 17 

chains of DS236, DS120 and DS56unbound, respectively. The remaining pairs are 

processed by T-PIP framework which also includes single chains in the ‘homologous’ 

category.  

The result in Table 5.1 and Table 5.2 shows that although the use of ICPIP in the 

T-PIP framework performs better than other groups’ methods, it has not improved the 

results obtained by T-PIP framework itself. T-PIP performance in precision, recall and 

F1 is ~2-5%, ~0.9-4.6% and ~ 1-2% above ICPIP. These results suggest that when 

ICPIP fails to correctly detect the best homologue, T-PIP prediction outperforms.  

Table 5.1: Evaluation of interface prediction methods using the Ds56unbound dataset. 

Predictor 

(DS56unbound) 
Precision Recall F1 Accuracy MCC 

T-PIP 53.8 48.5 49.6 84.0 41.1 

ICPIP 51.1 50.8 48.9 82.7 39.7 

IBIS  48.2 29.3 34.4 82.5 27.9 

PrISE 43.7 44.0 43.8 81.2 32.6 

PredUs 43.3 53.6 47.9 73.2 30.4 
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Table 5.2: Comparisonofinterfacepredictors’performanceonDS120andDS236. 

Predictor & dataset Precision Recall F1 Accuracy MCC 

T-PIP DS120 52.6 56.1 52.5 85.4 45.1 

ICPIP DS120 51.0 55.7 51.3 84.9 43.7 

PredUs DS120 47.3 58.2 48.5 69.4 24.4 

PrISE DS120 38.5 48.9 40.9 80.7 31.2 

IBIS DS120 42.6 37.4 37.4 83.8 29.9 

T-PIP DS236 53.2 55.3 52.1 85.3 44.8 

ICPIP DS236 52.2 54.8 51.3 85.1 43.8 

PrISE DS236 41.2 47.5 41.5 81.0 32.0 

IBIS DS236  40.9 36.9 36.2 83.6 28.8 

 

As in chapter 4, statistical significance of ICIPIP’s results is first evaluated by 

providing standard deviations of predictors, Table 5.3. Apart from ICIPIP all the figures 

are taken from Table 4.6. ICIPIP standard deviation is very similar to T-PIP’s which is 

in line with the fact that both methods provide predictions of similar quality. In 

addition, in Table 5.4, P-values are calculated for ICIPIP in comparison to other 

predictors. The statistically significance of ICIPIP performance is similar to what was 

shown for T-PIP in Table 4.7. Also, based on P-values in Table 5.4 the differences 

between ICIPIP and T-PIP performances are not statistically significant.  

Table 5.3: Standard deviations of interface predictors’ performance on DS120 and DS236. 

Numbers in the table display the standard deviation for every metric across the specified dataset. 

Predictor & dataset Precision Recall F1 Accuracy MCC 

T-PIP DS120 0.32 0.32 0.31 0.13 0.35 

ICIPIP DS120 0.33 0.33 0.32 0.13 0.36 

PredUs DS120 0.31 0.29 0.26 0.17 0.29 

PrISE DS120 0.22 0.21 0.19 0.10 0.21 

IBIS DS120  0.36 0.35 0.33 0.13 0.37 

T-PIP DS236 0.32 0.32 0.30 0.12 0.34 

ICIPIP DS236 0.33 0.33 0.31 0.13 0.35 

PrISE DS236 0.23 0.22 0.20 0.11 0.22 

IBIS DS236  0.36 0.34 0.32 0.12 0.36 
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Table 5.4: Significance of  ICIPIP predictions: comparison with other predictors on DS120 and 

DS236. Numbers represent P-values. Those highlighted in red are not judged significant (P-

values>0.05).  

ICIPIP, 

Predictor & 

dataset 
Precision Recall F1 Accuracy MCC 

ICIPIP, T-PIP 

DS120 
0.65 0.93 0.76 0.78 0.74 

ICIPIP, PredUs 

DS120 
0.38 0.54 0.45 1.09E-13 9.96E-06 

ICIPIP, PrISE 

DS120 
0.0007 0.06 0.002 0.01 0.001 

ICIPIP, IBIS 

DS120  
0.07 5.47E-05 0.001 0.55 0.005 

ICIPIP,T-PIP 

DS236 
0.71 0.89 0.76 0.84 0.77 

ICIPIP, PrISE 

DS236 
3.61E-05 0.01 7.25E-05 0.0002 1.96E-05 

ICIPIP, IBIS 

DS236  
0.0005 2.46E-08 6.17E-07 0.19 8.84E-06 

 

5.5 Discussion 

The idea behind ICPIP was to predict protein interfaces by detection of the best 

homologue using binding site transitivity. The reason behind this idea was that the 

detection of best homologue results in a better interface prediction than T-PIP as shown 

in chapter 4 discussion. In Table 5.5, the same results are shown but only for DS80. We 

recall that ‘Average homologues’ is calculated by averaging all targets average 

homologue which is simply the average of all the scores among homologues of that 

target. T-PIP performance is much better than average but is below what the ‘Best 

Homologues’ approach would produce.  Therefore, ICPIP was designed to achieve this 

optimal prediction by detecting the best homologue. 
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Table 5.5: Results based on selection of best homologues and average of homologues compared to 

T-PIP performance on DS80. Best homologues are selected by F1 score. 

Predictor (DS80) Precision Recall F1 Accuracy MCC 

Best Homologues 56.9 62.0 57.0 86.6 49.7 

T-PIP  39.0 44.3 39.7 82.0 30.1 

Average  homologues 30.4 34.5 29.8 79.1 19.7 

 

But as shown in the result section, ICPIP overall performance is below T-PIP, 

but at the same time ICPIP was able to detect a good quality homologue for 36% of the 

targets in DS236. Figure 5.11, shows the F1 score of ICPIP (blue circles) and T-PIP 

(red squares) for each target of DS80. These results confirm that two methods are 

orthogonal to each other, since their approach to interface prediction is different. T-PIP 

generates a censuses based on all the homologues while ICPIP focuses only on one 

homologue. Therefore, a meta method which can benefit from both predictions would 

improve the results. 

To confirm this idea, in Table 5.6 we have evaluated the performance of the 

combined predictions of TPIP and ICPIP (ICPIP+TPIP).  To combine these methods, 

for each target we have predicted the interfaces using both T-PIP and ICPIP. Then the 

best prediction based on the ground truth is taken as the result for that target. This 

combination method cannot be used in prediction since it requires the ground truth. But 

it displays that developing an intelligent meta predictor can significantly improve the T-

PIP prediction by ~8% on F1 score. The F1 score of ICPIP+TPIP is 43% while the best 

that can be achieved is 57% (Table 5.5). Although, still there is a gap to the best that can 

be achieved, an improvement of 8% is a big step toward better interface prediction.  

Based on Table 5.6, PrISE shows a better prediction results than T-PIP. 

However, Table 5.6 only displays a subsection of the whole T-PIP framework. We 

recall that Table 5.2 which displays the overall performance of T-PIP framework 

demonstrates the superiority of the T-PIP framework over PrISE. Note that T-PIP has 

other advantages over PrISE: first, T-PIP can predict interfaces for a QP chain whose 

structure is not available. Second, T-PIP prediction is faster than PrISE, since its 

structural alignment is performed once among homologues while PrISE requires 

searching in the repository of SEs, for every surface residue of the QP.  



Chapter 5 Structural-transitivity of Protein Binding Sites for Protein 

Interface Prediction 

Discussion 

 

182 

Table 5.6: Comparison of the combined interface prediction (ICPIP+TPIP) to each of the 

predictors separately. Note that: IBIS results are only for 74 chains since IBIS prediction is limited 

to availability of close homologues. PredUs performance is not displayed since results are not 

available on DS80 which is a subset of DBMK4.0. 

Predictor (DS80) Precision Recall F1 Accuracy MCC 

IBIS 36.0 32.1 31.7 83.0 24.1 

ICPIP 36.2 42.9 37.2 81.3 27.5 

T-PIP  39.0 44.3 39.7 82.0 30.1 

PrISE 40.0 47.5 40.8 81.8 32.0 

ICPIP+TPIP 42.8 47.8 43.0 83.5 34.6 
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Figure 5.11: Interface F1 score of DS80 targets in respect to available homologues. Horizontal line 

connects the maximum and minimum F1 calculated for homologues of a given target. Average 

homologue F1, T-PIP and ICPIP F1 are shown by yellow diamonds, red square and blue circles, 

respectively. 
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Although a combined predictor is the optimal goal, currently both T-PIP and 

ICPIP frameworks (Table 5.1 and Table 5.2) have demonstrated to be the best 

predictors. Both methods have their own advantages and limitations and their use can be 

customised to the user goal. ICPIP covers fewer predictions than T-PIP, since it requires 

the homologues of two interacting chains. But at the same time ICPIP can produce the 

docked structure of the two QPs since it aligns the first QP chain over the interacting 

partners of the second QP chain homologue. Figure 5.12 displays an example of ICPIP 

docked model. For target 1S1Q:A-B (in blue),  the chains in the unbound form 1YJ1-A 

and 2F0R-A are docked using ICPIP (in pink). The docked model is generated using the 

interface alignment between 1ZGU-B and 1UZX-B where the former is 1YJ1-A 

homologue and the latter is the interacting partner of 2F0R-A homologue. It should be 

noted that based on ICPIP alignment score 1ZGU-B had been selected as best 

homologue of 1YJ1-A. Since the RMSD between the actual and docked complexes is 

0.98 Å, this shows that ICPIP can predict a near-native docked model. In this instance, 

ICPIP provides a more accurate model than Cluspro whose best docked model for this 

target has a RMSD of 17.5 Å. The output of a complex configuration by ICPIP is 

advantage benefit over current state-of-the-art methods, including T-PIP, which only 

specify if residues are part of the interface or not without considering their pairwise 

residue interactions. 



Chapter 5 Structural-transitivity of Protein Binding Sites for Protein 

Interface Prediction 

Discussion 

 

185 

 

Figure 5.12: An example of ICPIP docked model. Each data point represents a C-alpha atom. The 

actual X-ray target 1S1Q:A-B is shown in blue where stars represent chain A and circles represent 

chain B. The docked ICPIP complex is shown in pink using the unbound chains 1YJ1-A (pink 

stars) and 2F0R-A (pink circles). This docked model is generated by the interface alignment of 

homologue of 1YJ1-A (1ZGU-B) and 2F0R-A homologue partner (1UZX-B). The RMSD between 

the docked and actual model is 0.98 Å. 

 Both ICPIP and T-PIP perform structural alignments but ICPIP has the risk of 

not finding the global maximum since it is based on local interface alignments. Apart 

from that, the best selected homologues for two QP are not always consistent. 

Consistency means that for example in Figure 5.4, since the alignment of a2 and pb1 

suggests A1 as the best homologue for A; then B1 should be selected as the best 

homologue of B when comparing its binding site to interacting partners of A1 and A2. 

This is not always the case in ICPIP, since homologues can interacting with a diverse 

set of partners using the same binding site structure (Martin 2010; Tsai et al. 1996). 

Since ICPIP prediction is based on one homologue, a continue interface is predicted 

while T-PIP can predict any residues regardless of their overall location in 3D space. 
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Therefore, depending on the application of interface prediction one can take advantage 

of the differences between T-PIP and ICPIP. 

5.6 Conclusion 

In chapter 4, we demonstrated that T-PIP performance can be improved if its 

prediction was based on detection of best homologue. In this chapter, we have presented 

ICPIP, which aims at predicting interfaces of two QP chains through detection of the 

best homologous. This is achieved by interface structural comparison among 

homologue of the first QP chain with the homologues binding partners of the second QP 

chain and vice versa.  

ICPIP uses ICP to perform interface alignments but due to its limitations, initial 

alignments stages have been introduced. Apart from this, Hungarian algorithm along 

with outlier detection has been integrated in ICP to account for both unique and partial 

assignment of data points. 

Comparisons show that ICPIP is capable of improving T-PIP results in 36% of 

the cases, while the overall performance remains lower than T-PIP. Since these methods 

are orthogonal their combination has shown to improve T-PIP prediction by ~8%. 

Therefore, design of a meta-predictor combining T-PIP and ICPIP can significantly 

improve interface prediction. In addition, ICPIP interface alignment procedure may be 

enhanced by performing labelling data points with their physico-chemical properties. 
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6 Conclusion 

This chapter concludes the dissertation. We first summarise our scientific 

contributions in section 6.1. Then, in section 6.2 we discuss the achievements and 

limitations of the proposed methods. In section 6.3, we propose a number of avenues for 

future research directions and finally closing remarks are provided in section 6.4. 

6.1 Summary of Contributions 

In this thesis, we have explored the field of protein interface prediction and 

detection of native-like 3D protein complexes by re-ranking their docked 

conformations.  

First, chapter 2 provided an extensive literature review of methods in protein 

interface prediction. We then gave an overview of docking algorithms and discussed 

methods, in particular those using predicted interfaces, for re-ranking docked poses. 

This detailed analysis allowed us to highlight issues which had not been fully addressed 

by the research community. In this thesis, we have investigated ways of dealing with 

some of them. 

Chapter 3 focused on creating 3D motifs which are binding site descriptors 

based on common structural pattern among homologues of a target protein. Although, 

3D motifs provide biological insight of protein-protein interaction and was successfully 

applied to a real application as shown with the LDLR-HNP1 complex, their usage is 

limited. First, its dependence to literature studies prevents its application for high-

throughput analysis, and, second, its creation requires homologous proteins which show 
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a homogeneous binding site pattern even on the interacting partner side. Finally, 3D 

motif creation is limited to the availability of close homologous complexes of the target 

protein.  

To overcome these limitations, in chapter 4, we introduced T-PIP, a protein 

interface predictor which processes more predictions by using remote homologues. In 

addition, T-PIP differs from other state-of-the-art methods by considering diversity 

among interacting partners of remote homologues. The scoring strategy of T-PIP results 

in a performance higher than other state-of-the-art methods. However, we also 

discovered that a T-PIP prediction would generally not outperform a prediction made by 

using the actual interface of the best available homologue if it had been identified.  

Therefore, in chapter 5, we proposed ICPIP which exploits the binding site 

transitivity concept to find the best homologue. This was achieved by structural 

interface comparison of the homologues of the first QP and the binding site of the 

homologues partner of the second QP. Comparisons with T-PIP showed that ICPIP is 

capable of improving T-PIP results in 36% of the cases. 

We also investigated usage of predicted interface residues for re-ranking docked 

conformations. In chapter 4, we introduced PioDock which used T-PIP prediction to re-

rank docked conformations, where higher rank was given to docked models showing 

more overlap with T-PIP prediction at their binding site. Comparison with other 

methods showed PioDock performs better on a standard benchmark. 

6.2 Discussion 

Despite our contribution to the state of the art, accurate prediction of interfaces 

and identification of near-native conformations remain challenging tasks. First, the 

actual binding site of the target protein does not always have a representative among 

homologous complexes. Second, when homologues binding sites refer to distinct 

potential sites it is a challenge to select the one corresponding to the actual interface. 

Third, docking software are still not able to produce native like models for every target. 

Finally, the performance of re-ranking using interface knowledge depends on the quality 

of predicted interfaces which is still far from being satisfying. 

Although the combination of our two orthogonal interface predictors, T-PIP and 

ICPIP, has shown potential for improving predictions, the choice of methods is not 
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straight forward and depends on the application. First, ICPIP covers fewer predictions 

than T-PIP, since it requires the homologues of two interacting chains. Second, while T-

PIP can predict interface from sequence of proteins, ICPIP requires the structure. 

Finally, using ICPIP, the best selected homologues for two QPs are not always 

consistent. On the other hand, unlike T-PIP which does not consider pairwise 

interactions between residues in its predictions, ICPIP predictions provide a description 

of the binding site environment. In addition, when ICPIP is able to detect the best 

homologue for a specific target, it performs better than T-PIP on that target.  

Both methods rely on availability of homologues complexes. Although, we have 

shown that T-PIP covers more proteins in comparison to homologous template-based 

predictors by considering remote homologues, methods based on structural neighbours 

are applicable on a larger range of targets than T-PIP.  

In addition, ICPIP detection of best homologue relies on a good interface 

alignment. Therefore, in cases where ICPIP is stuck in local minima it fails to detect the 

correct homologue.  

In regards to re-ranking docking conformations, 3D motif has been used for a 

real application. Although its usage is limited, it provides constraint which allows short 

listing only a few complexes. This makes it useful for further wet-lab investigation. In 

addition, 3D motifs can be used to identify putative partners of proteins with known 3D 

structures. On the other hand, PioDock is a high-throughput method whose performance 

depends on the quality of interface predictions. Using PioDock along with ground truth 

interfaces, which are continuous in the 3D space (patch-like), improved ranking. 

Therefore, usage of ICPIP, which provides a continuous interface prediction (using one 

homologue) can improve ranking in comparison to T-PIP. In addition, ICPIP itself 

provides a docking conformation which requires further investigation. 

Although we have made significant contributions to interface prediction by 

proposing T-PIP and ICPIP (chapter 4 and 5), and re-ranking docked conformations 

using 3Dmotif and PioDock (chapter 3 and 4), there is still scope for improvement. A 

few suggestions on how to further explore current methods are outlined in section 6.3. 
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6.3 Future Work 

While T-PIP is able to cover more predictions than other homologous template-

based predictors (introduced in section 2.3.2.1) by considering remote homologues, its 

coverage can be further expanded by exploring close and remote structural neighbours. 

T-PIP scoring can be improved by using structural alignments based on structural 

similarities among homologous/structural neighbours’ binding sites, since similar 

interface architectures have been detected among proteins displaying different functions 

and global structures (Keskin & Nussinov 2007).  

Moreover, we showed that knowledge of T-PIP predictions improves detection 

of near-native docked models. Also, we investigated that patch-like interface 

information can provide a more reliable ranking in comparison to non-continues 

interfaces. Therefore, T-PIP could be used along with clustering, similarly to the 

method used in JET interface predictor (Engelen et al. 2009), to provide a patch-like 

interface prediction. In consequence, this may result in better ranking of docked 

conformations.  

Although ICPIP improves T-PIP prediction in cases where it detects the best 

homologue, its detection relies on finding an optimal interface alignment using the ICP 

algorithm. ICP could be improved by considering physico-chemical properties of 

residues while performing the alignments, since two proteins interacting with a third 

protein using a similar binding site will show similar interface properties.  

In addition, ICPIP provides a template-based docking of models which requires 

further evaluation. This is an advantage over generating template-free docked poses 

which are computationally expensive. 

Finally, artificial combination of ICP and ICPIP has resulted in promising 

prediction of protein interfaces. Therefore, developing an intelligent meta predictor is 

our main future objective. An initial approach is to develop an SVM-based classifier 

trained on different properties of ICP and ICPIP algorithms. This classifier will then be 

able to distinguish whether T-PIP or ICPIP prediction is more reliable for a given target.  
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6.4 Closing Remarks 

This research has contributed to the fields of protein interface prediction and 

detection of native-like poses. Not only have we provided a mechanism for detailed 

analysis of interfaces which will benefit wet-lab investigations, but also, we have 

produced a tool for high-throughput interface analysis for the research community. 

Usage of this interface information may help many scientists in detection of the 

potential 3D structure of two protein chains allowing the investigation of drug design. 

Finally, the presented contributions are intended to motivate future research in 

the area of interface prediction and detection of native-like 3D complexes; and 

hopefully, directing a more significant contribution to those fields. 
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