
1

A mixed dataflow algorithm
for ray tracing on the CRAY T3E

Jean-Christophe Nebel
E-mail : nebel@limeil.cea.fr

Commissariat à l’énergie atomique Ecole Nationale Supérieure des Mines de Saint-Etienne
Centre de Limeil-Valenton Centre SIMADE
DRIF/DCSA/MLS/GDD 158, cours Fauriel
94195 Villeneuve-St-Georges Cedex 42023 Saint-Etienne Cedex 2
FRANCE FRANCE

Abstract

The ray tracing scheme is one of the most complete and efficient rendering methods. A
major drawback of this model is its high computational cost which limits its practical use.
Moreover, the quest for realistic rendering requires larger and larger databases to describe
scenes. With the development of distributed memory parallel computers such as the CRAY
T3E, the most promising way to improve ray traced pictures productions seems to be
parallelization which offers both increased CPU power and memory facilities.

In the ray tracing algorithm, each pixel of the screen is processed independently. A
natural way of parallelization is to distribute pixels over the machine nodes. However, since
we want to deal with large scenes, objects also have to be distributed among processors, so a
modified parallel algorithm is necessary.

Strategies based on object dataflow have been proposed, but their communication load
is too high. More efficient algorithms have to reduce the number of messages. Therefore we
propose a mixed dataflow approach : each message will contain several pieces of information
on both objects and rays. By this way, we hope to limit the communication load and to ensure
a dynamic load balancing.

A parallel ray tracing algorithm on the T3E using our mixed dataflow approach is
implemented. The results are very encouraging since the computation time and the
communication flows may be reduced by significant factors. Scalability is globally improved,
mainly because saturation occurs for larger problem sizes.

Key-words

Computer graphics, rendering, ray tracing, parallelism, DMPC, MPP, load balancing.



2

1. Introduction

The ray tracing scheme, introduced by Whitted [16], is one of the most complete and
efficient rendering methods. The basic idea is simple: when an observer sees a point on a
surface, he actually looks at the result of interactions between this point’s rays and other rays
coming from the scene. These interacting rays may come from light sources, reflections from
other surfaces or refractions through transparent objects.

A major drawback of this model is its high computational cost which limits its
practical use, despite numerous acceleration schemes (see survey [1]). Moreover, the quest for
realistic rendering requires larger and larger databases to describe scenes. With the
development of distributed memory parallel computers (DMPC), the most promising way to
improve ray traced pictures productions seems to be parallelization which offers both
increased CPU power and memory facilities.

We start this paper by studying the different kinds of parallelization used for ray
tracing. Next we describe a new scheme of dynamic load balancing for the object dataflow
algorithm and show some experimental results. Then, we propose an original approach of
parallelization, concurrently using object and ray dataflow. And, finally, we present results
and discussions.

2. Ray tracing on DMPC

In the ray tracing algorithm, all the pixels of the screen are processed independently. A
natural way of parallelization is to distribute pixels over the machine nodes. If the entire scene
can be duplicated in the memory of each processor (since there is no global memory
available), a scheme without dataflow is used; otherwise, objects composing the scene have to
be distributed over nodes. Then two strategies are possible to perform the computation :
object dataflow or ray dataflow.

2.1. Duplication of the scene

For this kind of algorithm, each processor independently computes its subset of the
pixels thanks to the duplication of objects in its local memory. A strategy for picture division
has to be defined for a good load balancing,. First, static distributions (compared in [11]) have
been proposed, but dynamic schemes are more efficient. The most classical one is the master-
slaves model [13], [15], where slaves ask the master pixels to compute. However, it is not
very scalable. Others strategies have been proposed : clusters with their own master [5] or
rings of workers exchanging pixels with their neighbours [2].

This approach may reach a very high level of efficiency, but it is limited by the size of
the local memory.

2.2. Object dataflow

In this approach, all the objects of the database are distributed on nodes and each
processor has to compute only the pixels which are in its own memory. When a ray has to
intersect an object missing from the local memory, a request to the processor owning this
object is executed. Then, after receiving this request, a copy of the object is sent to the caller.
Finally, this data is recorded in its cache memory. This object search may be performed by
using master-slaves models [5], tree based architectures [6] or shared virtual memories [4].



3

Static partitions of pixels have to be associated with schemes of dynamic load
balancing. Most of them are based on pixel exchanges, so that strategies explained in the
previous section (δ2.1) can be used.

The drawback of this algorithm is that its efficiency is strongly linked to the cache
memory size.

2.3. Ray dataflow

In this parallel scheme, the scene is divided into subsets so that each processor deals
with a particular part of the 3-D space. When a ray leaves a region to enter another one, its
computation is continued on by the processor which is responsible for the new area.

If a ray-object intersection cannot be performed, the solution is to send the ray to the
processor that owns the object instead of requesting a copy of the object, as in the object
dataflow method. Here, the critical phase is the object partition because it induces the
processors load. Numerous scene cutting methods have been studied in [9], for the uniform
spatial subdivisions, and in [3], [8], for those based on pre-sampling.

These pre-processing policies have to be combined with dynamic load balancing
strategies. They are mainly based on the competition between two processes on each
processor [10], [14]: one of the processes computes ray-object intersections, while the other
executes tasks which are not object-dependent. So overloaded processors simply execute the
first process, whereas unloaded ones execute the second process.

This parallelization requires a sharp load balancing, because unbalance is very scene
dependent.

2.4. Conclusion

Algorithms without dataflow are the fastest. However, if the scene has to be
partitioned because of its size, which one of the other two strategies is the best? This
comparison is not easy because scientists use different computers, communication networks
and scenes or their algorithms are not based on the same sequential algorithm.

Now that we have seen different schemes of parallelization, we are going to compare
the two algorithms with dataflow and then we propose another strategy.

3. Object dataflow algorithm with dynamic load balancing

First we compare parallel schemes under our needs and constraints. That allows us to
choose the basic algorithm for ours researches : an object dataflow scheme with asynchronous
communications. Next we present a new algorithm for dynamic load balancing. Finally we
show our experimental results.

3.1. Choice of an algorithm

At first, we wish to deal with scenes of large sizes. Consequently the scene has to be
distributed. That induces a choice between object and ray dataflow. Secondly our algorithm
shall be used on various parallel architectures (networks of workstations, CRAY T3D, CRAY
T3E...). Therefore we cannot profit by the topology of the network, and communications have
to be insured by higher level standard libraries (PVM or MPI). Moreover, CRAY T3D and
T3E prohibit the using of several processes on a processor and need a good behaviour with
hundreds of processors.



4

Efficient load balancing for ray dataflow, requiring the use of concurrent processes on
each processor, cannot be implemented. Then we have to turn to object dataflow algorithm.
However we have to limit costs of communications, because message passing is very time
consuming specifically on networks of workstations. That is why we decide to implement an
asynchronous scheme. At last, using massively parallel computers lead us to design a
decentralised dynamic load balancing.

3.2. Principles

We decide to develop an object dataflow algorithm with asynchronous
communications.
In such a scheme, when a ray-object intersection cannot be processed by one processor
because it does not own the object, the processor asks the object to the processor which owns
it. Then it waits for the object and continues its processing only when the message containing
a copy of the missing object is returned. Such kind of communication is very time consuming.
That is why we propose asynchronous communications and bufferization of object requests.

In our scheme, when a ray cannot be computed, its processing is interrupted and the
ray is placed in a special buffer. Then other rays are computed. The request to the processor
which owns the missing object is only performed when a certain number of rays needs this
same object. Communications are asynchronous, so computations may go on. Finally, when
the missing object is received, rays needing this object are processed.

Thanks to bufferization and asynchronous, communication costs may be reduced by
significant factors.

Load balancing is fundamental for parallel computation. Thus we propose two
complementary strategies. At first load balancing is ensured by an homogenous distribution of
pixels on processors. But considering we wish to work on MPP, we also have to implement a
scheme of decentralised dynamic load balancing.

This algorithm needs a scheme which allows every processor to know the load of the
others. Furthermore, we have to avoid the master-slaves scheme because it leads to
bottlenecks on MPP. Thus, each message will include a header, which contains information
about the load of the sending processor. This load is the number of rays still to be computed.
After a few messages, each processor is able to know the load of every other processor in the
parallel system (indeed, in our scheme, each processor communicates with all other
processors).

At every instant a node has the knowledge of other processors load. Thus, as soon as
one processor is going to lack work, it just has to directly ask to the processor having
important load.

At last, thanks to object requests bufferization, it is possible to select rays, which are
sent to the asker processor. At first we send rays that the asker can resolve with its local
memory, secondly other rays needing objects, and finally the rays left.

This dynamic load balancing scheme should be efficient on MPP and reduce the
number of object requests.



5

3.3. Experimental results

Now that principles of our algorithm have been explained, we present our
experimental results (entire results can be found in [12]).

Our strategy has been implemented from the sequential ray tracer OORT [17]. The
presented results have been simulated on a CRAY T3E with 128 processors interconnected by
a 3-D toric grid. The message passing library used is PVM. The size of the pictures is
512x512 pixels and the maximal ray depth is 5. Scenes come from the SPD database [7] and
contain between 341 and 8688 objects.

The following figure shows the computation time obtained with our object dataflow
algorithm without dynamic load balancing, according to the percentage of scene owned by
each processor, for various number of processors. Results are given for the database
Mountain5 and are representative to those got with other pictures.

Computation time depending of the scene partition

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 100

Percentage of scene owned by each processor

C
o

m
p

u
ta

ti
o

n
 t

im
e 

in
 s

ec
o

n
d

s

1 PE

2 PEs

4 PEs

8 PEs

16 PEs

32 PEs

64 PEs

128 PEs

On each chart, two parts may be dissociated. When most of the database is owned by
each processor, the computation cost of scene partition is low. But at a certain rate, depending
of the number of processors, computation time increases very fast. In fact, under a certain
partition rate, the number of communications is so high that asynchronism stops to be
efficient, processors have to wait for messages in order to be able to compute rays.

Now we study results obtained with our dynamic load balancing. In order to compare
our new strategy with the classical scheme, we divide the processing time of the algorithm
without dynamic load balancing by the processing time of the algorithm with dynamic load
balancing. The obtained values, we call time profits, are presented on the next figure. We
show results on 64 processors for various types of scenes.



6

Time profit depending of the scene partition

0,9

1

1,1

1,2

1,3

1,4

0 10 20 30 40 50 60 70 80 90 100

Percentage of scene owned by each processor

T
im

e 
p

ro
fi

t

Mountain5

Ring1

Tetrahedron6

Sphereflake4

Gears2

Tree8

Teapot9

Time profits of a load balancing scheme are strongly linked with the type of the tested
scenes, but we can make some general comments. Profits are between 1 and 1.4 and tend to
be optimal when a low percentage of the database is owned by each processor. It can be easily
explained because our dynamic load balancing algorithm is based on the knowledge of the
load of other processors. These load information are transmitted when communications are
performed. So the more messages are sent, the more loads are known precisely.

The communication cost of this scheme is very low, because it induces only some
messages asking rays and others sending rays.

On the next figure, we present the unbalancing of each processor for the algorithms
with dynamic load balancing and without balancing.

Load balancing effect

270

290

310

330

350

370

390

410

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Processor number

C
o

m
p

u
ta

ti
o

n
 t

im
e 

in
 s

ec
o

n
d

es

Without load balancing

With load balancing



7

On the figure, the balancing effect of our algorithm clearly appears. Our original
scheme gives good results: computation time is divided by 1.2. And the expected profits for a
better strategy are very low: the maximum unbalancing is 9 s (less than 3% of the
computation time).

If we want to improve more efficiently the ray tracing algorithm, we have to propose a
new way of parallelization instead of a new algorithm of load balancing. We present a new
parallelization algorithm in the next chapter.

4. A mixed dataflow algorithm

In this chapter, we first propose an original parallelization scheme based on mixed
dataflow. Then we present our experimental results.

4.1. Principles

A classical dynamic load balancing is only used at the end of computations when
processors need new rays to compute. This kind of strategy does not changed the way of
which the object dataflow algorithm is executed. Only the idle time of processors is reduced.
So a classical dynamic load balancing can only provide a low improvement.

It appears that the cost of numerous communications, in spite of the asynchronism, is
still important for the object dataflow algorithm. So more efficient algorithms have to reduce
the number of messages by a significant factor. A way to perform this task is to build
messages containing several pieces of information. Therefore from our object dataflow
algorithm, we propose to benefit of each object sending by adding rays in the same message.

When a processor (A) has to send an object to an other processor (B), a mixed
message may be composed. This message will contain the object and rays needing objects
owned by the processor (B). So, future object requests, which should be generated by these
rays, are avoided.

This ray insertion is done only if it does not risk to cause a load unbalancing and if the
number of rays to send is sufficient.

The following is an outline of our mixed dataflow algorithm :

IF I receive an object request from processor P
THEN

A message is initialised
IF my load is superior to a minimal load
THEN

IF I have a sufficient number of rays needing objects owned by processor P
THEN

The rays are moved in the message
ENDIF

ENDIF
The object is copied in the message
The message is sent to processor P

ENDIF



8

Thanks to this new kind of dataflow, we hope to reduce the number of
communications and ensure a dynamic load balancing.

4.2. Experimental results

We compare the results given by our mixed dataflow algorithm with these of the
object dataflow algorithm (entire results can be found in [12]). Next figure shows the time
profit obtained by the mixed dataflow algorithm for various scenes using 64 processors of the
CRAY T3E:

Time profit depending of the scene partition

1

1,5

2

2,5

3

3,5

0 10 20 30 40 50 60 70 80 90 100

Percentage of scene owned by each processor

T
im

e 
p

ro
fi

t

Mountain5

Ring1

Tetrahedron6

Sphereflake4

Gears2

Tree8

Teapot9

At first it appears that the time profits are not very linked with the type of the rendered
scene. The charts have very similar shapes.

Next, time profits may reach very high values, the processing time of the Mountain5
scene has been divided by 3.4! Moreover when processors owned less than the half of the
base, profits vary between 1.5 and 3.4. It is much better than the previous balancing scheme
(δ3.3) for which profits vary between 1.05 and 1.3.

Our algorithm needs a convenient flow of communications to reach its best efficiency.
But when there are too much communications - when less than 10 % of the scene is owned by
each processor -, asynchronism stops to be efficient. The time profits provided by our
algorithm decrease. Nevertheless they continue to be important (superior to 1.5).

Now we study the message profits induced by this new algorithm.



9

Message profit depending of the scene partition

1

1,5

2

2,5

3

3,5

4

4,5

0 10 20 30 40 50 60 70 80 90 100

Percentage of scene owned by each processor

M
es

sa
g

e 
p

ro
fi

t

Mountain5

Ring1

Tetrahedron6

Sphereflake4

Gears2

Tree8

Teapot9

This figure shows that our mixed algorithm improves computation times thanks to the
reduction of the message number. Message profits are between 1.8 and 4.3 when processors
owned less than the half of the base. Again we see that waiting for messages decreases profits.

Our mixed algorithm succeeds in reducing the computation time and the number of
messages sent during the computation. It fits to MPP architectures because communications
are decentralised and it reduces the risk of communication bottlenecks.

5. Conclusion and future work

In this paper, we have presented a new dynamic load balancing scheme for the object
dataflow algorithm which fits for MPP. The time profits provided for 64 processors reach 1.4
when only a small part of the database is owned by each processor.

By this way, better profits seem to be limited. So we have presented a new algorithm
for parallel ray tracing using mixed dataflow. It gives very encouraging results, seeing that the
computation time for a picture has been reduce by 3.4 compared with a classical object
dataflow algorithm. Moreover communication flows are strongly reduced.

Thanks to this new type of dataflow used, saturation of networks can be delayed,
results on massively parallel machine are improved and computation time is reduced by a
significant factor.

We are currently studying behaviours of this scheme on networks of workstations.



10

Acknowledgements

We thanks Eric Haines for supplying the SPD package [7]. This work was supported
by the CEA (Commisariat à l’Energie Atomique) and the EMSE (Ecole des Mines de Saint-
Etienne).

References

[1] J. Arvo and D. Kirk. An introduction to ray tracing, chapter 5. A survey of ray tracing
acceleration techniques, pages 201-262. Academic press, 1989.
[2] D. Badouel. Schémas d’exécution pour les machines parallèles à mémoire distribuée.
Une étude de cas: le lancer de rayon. PhD thesis, Université de Rennes I - IFSIC, Rennes,
October 1990.
[3] D. Badouel, K. Bouatouch and T. Priol. Distributed data and control for ray tracing in
parallel. IEEE computer graphics and applications, 14(4), pages 69-76, July 1994.
[4] D. Badouel and T. Priol. An efficient parallel ray tracing scheme for highly parallel
architectures. Advances in computer hardware v. rendering, ray tracing audiovisualisation
systems. Lausanne, CH, 2-3 September 1990, pages 93-106, September 1990.
[5] S.A. Green and D.J. Paddon. A highly flexible multiprocessor solution for ray tracing.
The visual computer, 6(2), pages 62-73, March 1990.
[6] S.A. Green, D.J. Paddon and E. Lewis. A parallel algorithm and tree-based computer
architecture for ray traced computer graphics. Parallel processing for computer vision and
display. Leeds, UK, 1988, January 1988.
[7] E. Haines. A proposal for standard graphics environments. IEEE computer graphics
and applications, 7(11), pages 3-5, November 1987.
[8] V. Isler, C. Aykanat and B. Ozguc. Subdivision of 3-D space based on the graph
partitioning for parallel ray tracing. Proc. second eurographics workshop on rendering, univ.
of Catalonia, Barcelona, 1991.
[9] H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura and Y. Shigei. Load balancing
strategies for a parallel ray-tracing system based on constant subdivision. The visual
computer, 4(4), pages 197-209, October 1988.
[10] W. Lefer. An efficient parallel ray tracing scheme for distributed memory parallel
computers. Proc. of parallel rendering symposium (1993), San Jose, California, October 25-
26, pages 77-80, October 1993.
[11] K. Murakami, K. Hirota and M. Ishii. Fast ray tracing. Fujitsu scientific and technical
journal, 24(2), pages 150-159, June 1988.
[12] J.-C. Nebel. Développement de techniques de lancer de rayon dans des géométries 3-
D adaptées aux machines massivement parallèles. PhD thesis, Université de Saint-Etienne,
Saint-Etienne, October 1997.
[13] I. Pandzic, N. Magnetat and M. Roethlisberger. Parallel ray tracing on the IBM SP2
and CRAY T3D. EPFL - Supercomputing review, 7, November 1995.
[14] T. Priol. Lancer de rayon sur des architectures parallèles : étude et mise en oeuvre.
PhD thesis, IFSIC, Rennes, June 1989.
[15] F.V. Reeth, W. Lamotte and E. Flerackers. Ray tracing speed-up techniques using
MIMD architectures. Programming and computer software, 18(4), pages 173-181, July 1992.
[16] T. Whitted. An improved illumination model for shaded display. Communication of
the ACM, 23, pages 343-349, 1980.
[17] N. Wilt. Object-oriented ray tracing. Wiley, 1994.


