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Abstract 10 

This paper presents a novel method that leverages reasoning capabilities in a 11 

computer vision system dedicated to human action recognition. The proposed 12 

methodology is decomposed into two stages. First, a machine learning based 13 

algorithm – known as bag of words- gives a first estimate of action classification from 14 

video sequences, by performing an image feature analysis. Those results are 15 

afterward passed to a common-sense reasoning system, which analyses, selects 16 

and corrects the initial estimation yielded by the machine learning algorithm. This 17 

second stage resorts to the knowledge implicit in the rationality that motivates human 18 

behaviour. Experiments are performed in realistic conditions, where poor recognition 19 

rates by the machine learning techniques are significantly improved by the second 20 

stage in which common-sense knowledge and reasoning capabilities have been 21 

leveraged. This demonstrates the value of integrating common-sense capabilities 22 

into a computer vision pipeline. 23 
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 26 

1. Introduction 27 

In the last decade, the automated recognition of human actions from video 28 

sequences has become an essential field of research in computer vision. Not only 29 

does it have applications in video surveillance, but also in indexing of film archives, 30 

sports video analysis and human-computer interactions. However, the task of action 31 

recognition from a single video remains extremely challenging due to the huge 32 

variability in human shape, appearance, posture, the individual style in performing 33 

some actions, and external contextual factors, such as camera view, perspective and 34 

scene environment.  35 

During the last few years, thanks to the availability of many datasets suitable for 36 

training action recognition algorithms, the field has made enormous progress to the 37 

point that the automatic annotation of the KTH (Schuldt et al., 2004) and Weizzman 38 

(Blank et al., 2005) databases is now considered solved. For more complex data, i.e. 39 

IXMAS (Weinland et al., 2006) and UT-Interaction (Ryoo and Aggarwal, 2009), 40 

accuracy rates around 80% are now claimed by state-of-the-art approaches 41 

(Waltisberg et al., 2010; Weinland et al., 2010; Nebel et al., 2011). Unfortunately, all 42 

those action recognition experiments are conducted with videos that are not 43 

representative of real life data, which led a recent review to conclude that none of 44 

existing techniques would be currently suitable for real visual surveillance 45 

applications (Nebel et al, 2011). This is further confirmed by the poor performance, 46 

obtained on videos captured in uncontrolled environments, such as Hollywood 1 and 47 

2 datasets (Laptev et al. 2008) and Human Motion DataBase (HMDB51) (Kuehne et 48 

al., 2011), where accuracies are 32%, 51% and 20% respectively (Kuehne et al., 49 



2011). In addition, these challenging datasets only display a fraction of the 50 

complexity exhibited by the real world, e.g. at most 51 different actions are 51 

considered. Consequently, usage of video-based action recognition remains a very 52 

distant aspiration for most actual applications.  53 

On the other hand, the human brain seems to have perfected the ability to recognise 54 

human actions despite their high variability. This capability relies not only on 55 

acquired knowledge, but also on the aptitude of extracting information relevant to a 56 

given context and logical reasoning. In contrast, machine learning based action 57 

recognition methodologies tend to learn isolated actions from a set of examples. 58 

Although only a few and limited attempts to introduce contextual information have 59 

been made (Waltisberg et al., 2010; Chen and Nugent, 2009; Akdemir et al. 2008; 60 

Vu et al. 2002; Ivano and Bobick, 2000), their performance supports the idea that 61 

action recognition can benefit greatly from combining traditional computer vision 62 

based algorithms with knowledge based approaches.  63 

In this paper, we propose a novel method relying on common-sense reasoning and 64 

contextual and common-sense knowledge which allows analysing, selecting and 65 

correcting annotation predictions made by a video-based action recognition 66 

framework. The presented approach is decomposed into two stages. First, a classic 67 

action recognition algorithm classifies actions independently according to similarity to 68 

the training set. Secondly, results are refined using common-sense knowledge and 69 

reasoning. More specifically, contextual information is exploited using common 70 

sense reasoning. 71 

2. Relevant work 72 

 73 



a. Video-based Human Action Recognition 74 

Video-based activity recognition algorithms can be classified into two different 75 

classes:  those that train from examples and those that provide descriptions of  76 

general types . The first and main category includes action descriptors based on 77 

Hidden Markov Models (Vezzani et al., 2010; Kellokumpu et al, 2008; Martinez et al. 78 

2009; Ahmad and Lee, 2008; Weinland et al., 2007), Conditional Random Field 79 

(Zhang and Gong, 2010; Natarajan and Nevatia, 2008; Wang and Suter, 2007), Bag 80 

of Words (Laptev et al., 2008; Liu and Shah, 2008; Matikainen et al., 2010; Ta et al., 81 

2010; Liu et al., 2008; Kovashka and Grauman, 2010) and low dimension manifolds 82 

(Wang and Suter, 2007b, 2008; Fang et al. 2009; Jia and Yeung, 2008; Blackburn 83 

and Ribeiro, 2007; Richard and Kyle, 2009; Turaga et al. 2008; Lewandowski et al. 84 

2010, 2011). Since those approaches do not include any reasoning capability, their 85 

efficiency relies on a training set which is supposed to cover the variability of all 86 

actions present in the target videos. Given that this condition can only be valid in the 87 

most controlled scenarios, it has been proposed to extend these techniques by 88 

adding some form of reasoning based on either rules or logic. 89 

The inclusion of reasoning has been sparsely used and mostly for specific 90 

applications. It should be noted it is particularly popular in intelligent surveillance for 91 

the detection of unusual events (Makris et al. 2008). Since training data do not exist 92 

to define those events, rules and reasoning are the only available tools. Usually, 93 

activities which do not match those present in the training set are classified as 94 

unusual. In the most specific field of action recognition, reasoning rules have proved 95 

particularly successful when dealing with interactions between subjects (Waltisberg 96 

et al. 2010). Indeed, following initial action recognition on each character individually 97 

using a Random Forest framework, analysis of those actions allows inferring the 98 



nature of their interaction. As reported by Waltisberg et al. (2010), this scheme 99 

outperforms the standard approach which deals with all characters at once and is the 100 

current state of the art on the UT-Interaction dataset (Ryoo and Aggarwal, 2009). 101 

These results support our hypothesis that additional knowledge and reasoning will 102 

lead to better performance. 103 

The second class of video-based activity recognition algorithms exploits a common 104 

knowledge-base or ontology of human activities to perform logical reasoning. Since 105 

ontology design is empirical in nature and labour intensive - symbolic action 106 

definitions are based on manual specification of a set of rules -, current ontologies 107 

are only suitable for very specific scenarios. In the field of video surveillance, 108 

ontologies have been proposed for analysis of social interaction in nursing homes 109 

(Chen et al., 2004), classification of meeting videos (Hakeem and Shah, 2004) and 110 

recognition of activities occurring in a bank (Georis et al., 2004). However, there is a 111 

need for an explicit commonly agreed representation of activity definitions 112 

independently of domain and/or algorithmic choice. Such common knowledge base 113 

and its exploitation through rules would facilitate portability, interoperability and 114 

sharing of reasoning methodologies applied to activity recognition. Several attempts 115 

have been made to design ontologies for visual activity recognition in a more 116 

systematic manner (Akdemir et al., 2008, Hobbs et al., 2004, Francois et al, 2005) so 117 

that they can cover different scenarios, e.g. both bank and car park monitoring 118 

(Akdemir et al., 2008). However, they remain limited to a few domains - up to 6 119 

(Hobbs et al., 2004). 120 

 121 

b. Common Sense Reasoning 122 



Within the artificial intelligence (AI) community, the usage of video as information 123 

source for reasoning has not been extensively applied (Moore et al., 1999; Duong et 124 

al., 2005). This is due to the lack of robustness and consistency of video features in 125 

real world scenarios, where the huge variability of the conditions impact considerably 126 

on activity recognition. As a consequence, AI researchers have focused on using 127 

sensors which are more reliable and consistent, but more intrusive, sensors to 128 

gather an actor’s behavioural information (Wang et al. 2007c). They include 129 

wearable sensors based on inertial measurement units (e.g. accelerometers, 130 

gyroscopes, magnetometers) and RFID tags attached to the actors and/or to objects. 131 

In such set-up, complex reasoning is possible and successful artificial intelligence 132 

approaches have flourished (Wang et al., 2007c; Philipose et al., 2004; Tapia et al., 133 

2004). However, most of these sensors are not suitable in most real life applications 134 

due to either their intrusive nature, e.g. subjects may refuse to wear them, or 135 

technical factors, such as size, ease of use and battery life.  136 

Among the AI approaches which could be considered for video based human action 137 

recognition, common-sense, probabilistic and ontological reasoning, as described in 138 

the previous subsection, are of particular interest. Ontological languages such as 139 

OWL (Dean et al., 2011a) and RDF (Dean et al., 2011b) use a syntax that imposes 140 

severe restrictions in the type of information that can be represented. First, 141 

relationships involving more than two entities cannot be considered since they may 142 

lead to hold a-priori inconsistent information, which is not allowed in this 143 

methodology. Secondly, since reasoning is limited to checking the consistency of the 144 

knowledge base, new information cannot be inferred. Both common-sense and 145 

probabilistic reasoning are able to address those limitations. However, their nature is 146 

very different since they can be classified as techniques based on either qualitative 147 



or quantitative reasoning. A weakness of quantitative reasoning comes from the 148 

complexity of estimating accurate probabilities for activities of interest: in practice it is 149 

unfeasible when dealing with unconstrained and realistic scenarios (Kuipers, 1994). 150 

On the other hand, qualitative reasoning has the ability of considering causality and 151 

expected behaviour based on logics, i.e. reasoning can provide explanations 152 

rationalising or motivating a given action, whereas probabilistic reason can only 153 

support decisions according to probability associated to actions. 154 

As a consequence, common-sense reasoning (McCarthy, 1968, 1979; Minsky, 1986; 155 

Lenat, 1989, 1990) appears particularly suited to video based human action 156 

recognition. It provides the capability of understanding the context situation, given 157 

the general knowledge that dictates how the world works, which allows correcting 158 

mistakes made by the video analysis system.  McCarthy proposes an approach to 159 

build a system with the capability to solve problems in the form of an “advice taker” 160 

(McCarthy, 1968). In order to do so, he reckons that such an attempt should be 161 

founded in the knowledge of the logical consequences of anything that could be told, 162 

as well as the knowledge that precedes it. In that work, he postulates that “a program 163 

has common sense if it automatically deduces from itself a sufficiently wide class of 164 

immediate consequences of anything it is told and what it already knows''. Following 165 

McCarthy and Minsky’s studies (McCarthy, 1968; Minsky, 1986), it appears a way of 166 

enhancing systems with the capability to understand and reason about the context is 167 

by introducing commonsense knowledge similar to that humans hold.  168 

In this work, we propose the integration of common-sense knowledge and reasoning 169 

within a video human activity recognition framework in order to improve accuracy. 170 

First, a machine learning based action recognition algorithm processes videos to 171 

generate data appropriate for logical inferences. Consequently, video data become a 172 



suitable information source for reasoning. Secondly, common-sense reasoning 173 

increases accuracy of the computer vision algorithm by introducing general, so 174 

called common-sense, and context-independent knowledge. This addition should 175 

allow usage of video based systems within real life applications. 176 

3. Novel action recognition framework 177 

 178 

a. Principles 179 

We propose a novel two-stage framework where initial action predictions made by a 180 

machine learning approach are analysed, refined and, possibly, corrected by the 181 

second layer common-sense reasoning system.  182 

 183 

Figure 1: Action recognition framework 184 

Given a video, V, which can be divided into a sequence of T actions and a computer 185 

vision system (CVS) trained to recognise N types of actions, each action, Vt, is 186 

processed independently and is associated to an action estimation vector, At, which 187 

ranks the N types of actions according to their similarity to Vt. Eventually, the CVS 188 



generates an action estimation matrix, A, of dimensions (T x N), where Aj
t represents 189 

the ith most likely type of the tth action occurring in the video. Each action estimate 190 

generated by the CVS is passed as input to the AI reasoning system (AIRS) which 191 

produces, in an online manner, J stories, Sj. These stories are generated and 192 

updated according to every new estimate At.  193 

In this paper, we define a ‘story’ as a coherent list of action types describing a video 194 

of interest. Coherence is defined by respect to both world and domain specific 195 

knowledge, WK and DSK respectively. Selection of action types relies on common-196 

sense reasoning applied to the action estimations A, and possible recognition of 197 

activities defined in the expectation knowledge, EXP. Note that a story may contain 198 

‘unknown action’ labels when, for a given action, none of the estimations allows 199 

coherent annotation. Stories are ordered by the AIRS and the most likely one is 200 

always first, in the same way that actions have been ordered and prioritised by the 201 

CVS.  202 

The AIRS processes every action estimation vector, At, according to the J stories Sj 203 

existing at t-1. First, the validity of each action estimates Ai
t is verified within the 204 

context of each story Sj using knowledge contained in WK and DSK. This is done 205 

inside the block Action validation/correction depicted in Figure 1. Secondly, if the 206 

sequence of previous actions stored in Sj led to the recognition by EXP of an activity 207 

(Figure 1, block Activity Recognition) which expected a specific action type in order 208 

to be completed, and if that type is not present in At, a correction of At is performed, 209 

i.e. the expected type is added to the story Sj instead of At. Finally, each valid action 210 

of At updates an existing story (Figure 1, block story update/swap). If a valid action 211 

cannot be allocated to a story, a new story is created. Since during the process, the 212 

most likely action estimates have priority to be allocated to the first stories, S1 is the 213 



story which is the most likely to describe accurately the video of interest. However, if 214 

any other Sj shows a more likely storyline, the position of S1 as ‘main story’ may be 215 

swapped with Sj (Figure 1, block story update/swap). 216 

We illustrate some of the reasoning performed by AIRS with an example, see Figure 217 

2: an activity (‘Getting up’) incompatible with the current story (S1) is rejected 218 

according to the world and domain specific knowledge; valid actions (‘Throwing’ & 219 

‘Sitting down’) are assigned to parallel stories (S2 and S3); an activity (‘Reading’) is 220 

recognised based on expectations, consequently the expected action (‘Sitting down’) 221 

is prioritised. 222 

 223 

 224 

Figure 2: Example of reasoning performed by AIRS. Blue and red arrows represent, 225 

respectively, valid and invalid actions. Green box depicts the sequence of action 226 

which led to the recognition of an activity (reading) based on expectations. Blue box 227 

shows the expected action (sitting down). 228 

b. Common sense reasoning algorithm 229 



The AIRS assigns and evaluates correspondences between action estimations in 230 

vector At and the stories S existing at t-1. The validity of each action estimate Ai
t is 231 

verified sequentially within the context of the main story S1 using knowledge 232 

contained in WK and DSK. Once action allocation, if any, has been completed for the 233 

main story, the same process is followed for all the other stories Sj using the 234 

remaining action estimates. This double sequentiality in the assignment of actions to 235 

stories deals with the fact that both stories and actions are ordered, where the first 236 

actions/stories are always the most likely. 237 

The n first action estimates are all considered as possible alternatives. Therefore, 238 

new stories are created if they do not fit any of the existing ones. The rationale 239 

behind this is that, although the first estimate provided by the CVS is not always 240 

correct, the CVS is quite robust since the correct action is likely to be present among 241 

the first n estimates (see ‘Experimental results’ section). During the allocation 242 

process of a given time step, some stories may not be allocated to any action, if 243 

none of the available action estimates is valid in their context according to  WK and 244 

DSK. 245 

A second level of reasoning is introduced by exploiting the concept of activity 246 

recognition. This is modelled in our system through the expectation knowledge, EXP. 247 

For each story Sj, if the sequence of previous actions leads to the recognition of an 248 

activity by EXP, the next action assigned to the story Sj must match the expected 249 

one, eA. In case where the expected action type is not present in At, At is corrected 250 

by including eA in the estimate vector so that eA can be assigned to story Sj. This 251 

mechanism provides a higher level of reasoning, going further than the validation 252 

mechanism provided by the DSK and WK, which allows correcting estimate failures 253 

of the CVS. However, in order to avoid over-reasoning errors, corrections are 254 



introduced only when, in addition to validation, a unique activity is recognised, i.e. 255 

when there is no doubt regarding the type of the expected action. 256 

 257 

Through the previously described process, the AIRS gives priority to the most likely 258 

action estimates in their allocations to the first stories. As a consequence, the AIRS 259 

output is an ordered set of stories, where S1 is the story which is the most likely to 260 

describe accurately the video of interest.  261 

However, the accuracy of the CVS may depend of the nature of the action and vary 262 

over time during video processing, which may lead to the correct estimates to be 263 

lower in the action estimation vectors. Consequently, after a while S1 may not 264 

contain the most likely story. The AIRS addresses this issue using a story swapping 265 

mechanism. When the AIRS is able to allocate systematically actions to a given story 266 

Sj and activities kept being recognised according to the expectations, this story is 267 

accepted as the main story and swapped with S1. Empirical experimentations have 268 

shown that the story swapping mechanism should be triggered when a story displays 269 

two consecutive activity recognitions, TH=2. 270 

 271 

This reasoning algorithm is presented through the following pseudo code. First, the 272 

main variables are defined. Then, the core of the algorithm is detailed. Finally, the 273 

main functions are described. Note that functions are colour-coded to allow better 274 

readability of the algorithm. 275 

 276 
/////////////////////////////////////////////////// ////////////////////////277 
// INPUT 278 
/////////////////////////////////////////////////// ////////////////////////  279 
// Expert systems 280 
Expert DSK,WK,ExP;  281 
//An action is a primitive 282 
Action eA;  // expected action 283 
Action A t [N]; // alternative actions predicted for time t,  284 

// A t  are ranked according to CVS’s prediction confidenc e 285 



Int N;  // number of alternative actions at time t   286 
//A story is a list of actions 287 
Story S[J];   // existing stories 288 
Int J=1;  // number of existing stories, one starts  with 1 story 289 
S[1]=null;  // the initial story is empty 290 
 291 
//Each story is associated to a list of possible ac tivities containing 292 
future actions for the next time t 293 
Typedef Action[] Activity; 294 
Activity PossibleActiv[][J]=[ ALL ][J]; // set of a ctivities, initially all  295 
              // activities are possible   296 
Int expect_fulfill[J]=zeros(1,J); // story counter for swapping mechanism 297 
/////////////////////////////////////////////////// //////////////////////// 298 
// MAIN 299 
/////////////////////////////////////////////////// //////////////////////// 300 
for t=1:Inf   // for each time step  301 
   N=length(A t );     // number of alternative actions 302 
   Bool assigned_action[N]=zeros(1,N); // no action  is assigned 303 
   J=length(S);     // number of existing stories 304 
   Bool updated_story[J]=zeros(1,J);  // no story h as been updated 305 
   for i=1:N  // for each alternative action   306 

// integration of action i into an existing story 307 
for j=1:J  // for each existing story 308 

    if (updated_story(j)==0)   // if story j is ava ilable 309 
      // activity recognition process 310 

eA=f_activity_recognition(PossibleActiv(j));//expec ted activity  311 
if (eA!=null)   // if activity recognised    // 312 
story updating process  313 
   [PossibleActiv(j),S(j)]= f_story_update 314 

(eA,PossibleActiv(j),S(j),ExP); 315 
   updated_story(j)=1;  // story j is updated  316 
   // action allocation process 317 
   assigned_action=f_action_allocation(assigned_act ion,eA,A t ); 318 

     // story swapping process 319 
   [S,expect_fulfill]=f_storySwapping(S,expect_fulf ill,j); 320 
else     // no activity is recognised 321 
   if (assign_action(i)==0)   // if action i is ava ilable 322 

// action validation process 323 
if f_action_validation(A t (i),DSK,WK,S(j))//if A t (i)valid  324 

       // story updating process  325 
   [PossibleActiv(j),S(j)]=f_story_update 326 

(A t (i),PossibleActiv(j),S(j),ExP); 327 
   updated_story(j)=1;  // story j is updated 328 

       // action allocation process 329 
   assign_action(i)=1;   // action i is allocated 330 

  end  331 
    end  332 

end 333 
   end  334 

 end 335 
// integration of non-assigned action i into a new story 336 
if (assign_action(i)==0) // if action i is availabl e 337 
   // action validation process  338 
   if f_action_validation(A t (i),DSK,WK,S(j)) // if action i is valid 339 
 // story creation process  340 

[PossibleActiv,S,expect_fulfill]=f_story_creation 341 
(S,A t (i),ExP,expect_fulfill); 342 

  J=length(S);    // update number of stories 343 
  updated_story(J)=1;   // story J is updated 344 

// action allocation process 345 
assign_action(i)=1;     // action i is allocated 346 



   end   347 
end 348 

  end 349 
end 350 

Expectations are checked at each given time t, for each current story (function 351 

f_activity_recognition ). If the number of current expected activities is only one, 352 

the nature of the ongoing activity is known. Therefore, the function is able to return 353 

the expected type of the next action, eA.  354 

function [Action a]=f_activity_recognition(Activity  pred)  355 
 if (size(pred)==1) 356 

 return pred(1); 357 
 else 358 
  return null; 359 
 end 360 

If any of the n observed actions of At matches eA, this action is set as allocated to 361 

avoid inclusion in any other story (function f_action_allocation ). 362 

function [bool b]=f_  action_allocation(bool b, Action a, Action[] v) 363 
 for i=1:size(v) 364 
  if(v(i)==a) 365 
   b=1; 366 
  end 367 
 end 368 
 return b; 369 

When an action has been judged suitable to be added to a story, the current story is 370 

updated (function f_story_update ). This also involves updating the list of possible 371 

ongoing activities, i.e. knowledge about possible actions for time t+1:  372 

PossibleActiv(j) . This is achieved by, first, retrieving all expected activities in the 373 

knowledge of action a at time t, p2, (function retrieve_expected_activities ) 374 

and, then, by finding the intersection between this list and the one predicted for time 375 

t, p, (function intersection ). If no intersection exists, i.e. either CVS has failed or 376 

reasoning has been erroneous, since it is not possible to distinguish the source of 377 

the failure, expected activities are reset to p2 to avoid propagating errors. 378 

function [Activity p,Story s]=f_story_update 379 
(Action a,  Activity p, Story s,  ExP e) 380 



Activity p2=null; 381 
 s=[s a];    // add action a to current story s 382 
 p2=retrieve_expected_activities(e,a);   383 
 p=intersection(p,p2);  // new list of expected act ivities 384 
 if (size(p)==0) 385 
  p=p2; 386 
 end; 387 
 return [p,s]; 388 

If the activity recognition algorithm was able to detect unequivocally the nature of an 389 

ongoing activity within a story, Sj, confidence in that story is increased. This is stored 390 

in the variable expect_fulfill .  The valued of that variable is evaluated during the 391 

story swapping mechanism (function f_storySwapping ). If it shows that the story Sj 392 

has consecutively recognised activities (in our case twice TH=2), the story Sj is 393 

swapped with S1 and becomes the main story, i.e. the most likely one. 394 

function [Story s[], int[] f]=f_storySwapping(Story  s[], int[] f, int indx) 395 
 Story s_tmp; 396 

f(indx)++; 397 
 if f(indx)>=TH 398 
 // s(index) is moved as top story and all the othe rs are shifted down  399 
  s = [s(indx) s(1: indx-1) s(indx-1:end)};  400 

  f = zeros(1,J); 401 
 end 402 
 return [s,f]; 403 

If the activity recognition mechanism does not detect any ongoing activity or several 404 

activities are possible, action allocation only relies on action validity. This is 405 

evaluated according to the action global coherence with the world WK and the 406 

domain specific knowledge DSK within the context of a story (function 407 

f_action_validation ). 408 

function bool=f_action_validation(Action a,DSK d,WK  w,Story s) 409 
 return validate(a,d,s,w);     410 

If an action is judged as valid, the action is assigned to the story and expected 411 

activities are updated (function f_story_update ). After the assignment, boolean 412 

vectors, assigned_action and updated_story , are updated to make sure that each 413 

action is assigned at most to one story and that each story is not updated more than 414 

once for a given time t.  415 



Finally, if an action is valid but has not been assigned to any current story, a new 416 

story is created (function f_story_creation ). 417 

function [Activity p, Stories s, int[] f]=f_story_c reation(Stories s, 418 
Action a, EXP e,  Activity p, int[] f) 419 

Activity Activnew=[All]; 420 
Story Snew=[]; 421 
[Activnew, Snew]=f_story_update(a,Activnew,Snew,e);  422 
J=J+1; 423 
s(J)=Snew; 424 
p(J)= Activnew; 425 
expect_fulfill(J)= 0; 426 

 return [p,s]; 427 

4.  Implementation 428 

 429 

a. Computer vision based action recognition 430 

Although computer vision based action recognition has been a very active field of 431 

research, only a few approaches have been evaluated on view independent 432 

scenarios. Accurate recognition has been achieved using multi-view data with either 433 

3D exemplar-based HMMs (Weinland et al., 2007) or 4D action feature models (Yan 434 

et al. 2008). But, in both cases performance dropped significantly in a monocular 435 

setup. This was addressed successfully by representing videos using self-similarity 436 

based descriptors (Junejo et al., 2008). However, this technique assumes a rough 437 

localisation of the individual of interest which is unrealistic in many applications. 438 

Similarly, the good performance of a SOM based approach using motion history 439 

images is tempered by the requirement of segmenting characters individually (Orrite 440 

et al. 2008). More recently a few approaches have produced accurate action 441 

recognition from simple extracted features: two of them rely on a classifier trained on 442 

bags of words (Kaaniche and Bremond, 2010; Liu et al. 2008) whereas the other one 443 

is based on a nonlinear dimensionality reduction method designed for time series 444 

(Lewandoski et al. 2010).  445 



Among those approaches, the Bag of Words (BoW) framework is particularly 446 

attractive since, not only it is one of the most accurate methods for action 447 

recognition, but its computational cost is low. Moreover, BoW can be applied directly 448 

on video data without the need of any type of segmentation. The versatility of that 449 

framework has been demonstrated on a large variety of datasets including film-450 

based ones (Laptev and Perez, 2007). Consequently, in this study, we decided to 451 

base the computer vision system of our action recognition framework on a BW 452 

methodology. 453 

 454 

Figure 3: BoW framework: a) Training and b) classification pipelines 455 

BoW is a learning method which was used initially for text classification (Joachims, 456 

1998). It relies on, first, extracting salient features from a training dataset of labelled 457 

data. Then, these features are quantised to generate a code book which provides 458 



the vocabulary in which data can be described and analysed. Here, we based our 459 

implementation on that proposed by (Csurka et al., 2004).  460 

The BoW training stage aims at, first, producing a codebook of feature descriptors 461 

and, secondly, generating a descriptor for each action video available in the training 462 

set, see Figure 3 a). The training pipeline starts by detecting salient feature points in 463 

each video using a spatio-temporal detector (Harris 3D) and describing each 464 

individual point by a histogram of optical flow (STIP) (Laptev, 2005). Once feature 465 

points are extracted from all training videos, the k-means algorithm is employed to 466 

cluster the salient point descriptors into k groups, where their centres are chosen as 467 

group representatives. These points define the codebook which is then used to 468 

describe each video of the training set. Finally, those video descriptors are used to 469 

train SVM classifiers – one per action of interest - with a linear kernel.  470 

In order to recognise the action performed in a video, Figure 3 b), salient feature 471 

points are first detected. Then, their descriptors are quantified using the codebook in 472 

order to generate a video descriptor. Finally, the video descriptor is fed into each 473 

SVM classifier, which allows quantifying the fit between the video and each trained 474 

action type. Therefore, an action estimation vector A can be generated where action 475 

types are ranked according to their fit.  476 

b. Knowledge-Base System for Common Sense Reasoning 477 

Automating common-sense reasoning requires an expressive-enough language, a 478 

knowledge base and a set of mechanisms capable of processing this knowledge to 479 

check consistency and infer new information. A few knowledge-based approaches 480 

offer such features, i.e. Scone (Chen and Fahlman, 2008; Fahlman, 2006), Cyc 481 

(Lenat et al. 1989, 1990), WordNet (Fellbaum, 1998) or ConceptNet (Eagle et al., 482 



2003). Among them, the open-source Scone project is of particular interest since, 483 

instead of placing its focus on collecting common-sense knowledge, it provides 484 

efficient and advanced means for accomplishing search and inference operations. 485 

The main difference between this and other approaches lies in the way in which 486 

search and inference are implemented. Scone adopts a marker-passing algorithm 487 

(Fahlman, 2006), which is not a general theorem-prover, but is much faster and 488 

supports most of the search and inference operations required in common-sense 489 

reasoning: inheritance of properties, roles, and relations in a multiple-inheritance 490 

type hierarchy; default reasoning with exceptions; detecting type violations; search 491 

based on set intersection; and maintaining multiple, immediately overlapping world-492 

views in the same knowledge base. In addition, Scone provides a multiple-context 493 

mechanism which emulates humans’ ability to store and retrieve pieces of 494 

knowledge, along with matching and adjusting existing knowledge to similar 495 

situations. 496 

In our framework, the algorithm described in section 3b was implemented using 497 

Scone in order to encode formal definitions and their applications for WK, DSK and 498 

EXP. It is important to note that, although we took advantage of the proposed multi-499 

context mechanism (Chen and Fahlman, 2008), we exploited it for a usage it was not 500 

originally intended for, extending its application for a wider purpose. In particular, we 501 

propose the usage of multi-context for the management of alternative stories 502 

describing coherent explanations of the video of interest.  503 

The three sources of knowledge exploited in our implementation, i.e. WK, DSK and 504 

EXP, are described below: 505 



1. World knowledge, WK, comprises all relevant common-sense knowledge that 506 

describes “how the world works”. This information is independent of the 507 

application domain, in the sense that it only considers general knowledge 508 

rather than specific or expert knowledge about a specific field. As an example, 509 

we provide below the description of the implications of performing the action 510 

of ‘scratching the head’. 511 

(new-event-type {scratch} '({event}) 512 
:roles 513 
((:type {scratcher} {animated thing}) 514 
(:type {scratched thing} {thing}))) 515 
(new-event-type {scratch head} 516 
'({scratch} {action}) 517 
:roles 518 
((:rename {scratched thing} {scratched head}) 519 
(:rename {scratcher} {scratcher hand})) 520 
:throughout 521 
((new-is-a {scratcher hand} {hand})) 522 
:before 523 
((new-statement {scratcher hand} {approaches} {scra tched head}) 524 
(new-not-statement {scratcher hand} {is in direct c ontact to} 525 
{scratched head})) 526 
:after 527 
((new-statement {scratcher hand} {is in direct cont act to} 528 
{scratched head}))) 529 

2. Domain specific knowledge, DSK, describes a given application domain in 530 

terms of the entities that are relevant for that specific context, as well as, the 531 

relationships established among those. The description of an element 532 

“punching ball” as part of the layout of a specific room is an example of 533 

domain specific information. 534 

(new-type {bouncing element} {thing}) 535 
(new-type {punching ball} {thing}) 536 
(new-is-a {punching ball} {bouncing element}) 537 
(new-indv-role {punching ball location} {punching b all} {location}) 538 
(new-statement {punching ball} {is in} {test room})  539 
(new-statement {punching ball} {rests upon} {test r oom floor}) 540 
 541 

3. Expectations, EXP, consist in sequences of actions that are expected to 542 

happen one after the other. It encapsulates logical concepts such as causality, 543 

motivation and rationality, which are expected in human action recognition. 544 



For example, in a waiting room context, if a person picks up a magazine, that 545 

person is expected to sit down and read the magazine. Expectations are part 546 

of the domain specific knowledge since described behavioural patterns are 547 

context specific. 548 

(new-indv {picking up a book for reading it} {expec tations}) 549 
(the-x-of-y-is-z {has expectation} {picking up a bo ok for reading it} {walk 550 
towards}) 551 
(the-x-of-y-is-z {has expectation} {picking up a bo ok for reading it} {pick 552 
up}) 553 
(the-x-of-y-is-z {has expectation} {picking up a bo ok for reading it} {turn 554 
around}) 555 
(the-x-of-y-is-z {has expectation} {picking up a bo ok for reading it} {sit 556 
down}) 557 
(the-x-of-y-is-z {has expectation} {picking up a bo ok for reading it} {get 558 
up}) 559 

 560 

5. Experimental results 561 

 562 

i. Dataset and Experimental Setup  563 

In order to perform action recognition experiments which are relevant to real life 564 

applications, videos under study should display realistic scenarios. In addition, a 565 

suitable training set must be available, i.e. it must be able to cover a variety of 566 

camera views so that recognition is view-independent and the set should include a 567 

sufficiently large amount of instances of the actions of interest. These instances must 568 

be not only annotated but perfectly segmented and organised to simplify the training. 569 

The only suitable training sets which fulfil these requirements are IXMAS (Weinland 570 

et al., 2006) and Hollywood (Laptev et al. 2008), as stated in the introduction. 571 

Whereas the Hollywood dataset is oriented towards event detection which includes 572 

significant actions but largely independent from each other (drive car, eat, kiss, 573 

run...), IXMAS is focused on standard indoor actions which allows providing quite an 574 

exhaustive description of possible actions in this limited scenario. Therefore, IXMAS 575 



actions may be combined to describe simple activities, i.e. sit down-get up, pick up-576 

throw, punch-kick and walk-turn around, and eventually provide complete 577 

representations of sets of actions performed by individual, i.e. recognition of whole 578 

stories. 579 

Thus, for training, the publicly available multi-view IXMAS dataset is chosen 580 

(Weinland et al., 2006). It is comprised of 13 actions, performed by 12 different 581 

actors. Each activity instance was recorded simultaneously by 5 different cameras. 582 

Since no suitable standard videos are available in order to describe the complexity of 583 

a real life application with a significant number of complex activities, we create a new 584 

dataset, called the Waiting Room dataset “WaRo11” (Santofimia et al., 2012), that 585 

we make available to the scientific community. In addition, using very different 586 

datasets for training and testing allows us to show the generality of our framework, 587 

its capabilities for real-world applications and its performance under a challenging 588 

situation. 589 

Since the “WaRo11” dataset has been designed for being representative of the 590 

variability existing in a real life scenario, but also for integrating most of the actions 591 

trained for the CVS, a specific setup was configured to simulate a waiting room. In 592 

this setup, actions happen without giving any instructions to the subjects. They are 593 

performed as natural part of their behaviour and motivation as human beings. This is 594 

facilitated thanks to the presence of several elements interrelated to each other, 595 

which may introduce causality and sequentiality as it is found in a real situation. For 596 

instance, the presence of a book and a chair could motivate a subject to first pick up 597 

the book and then sit down to carry out the action reading. Alternatively, a subject 598 

may pick up the book, realises its topic of no interest and decides to throw it away. 599 



This waiting room setup was implemented in a single room and filmed by a single 600 

fixed camera. A book was positioned on the floor, a chair was left in a corner and a 601 

punching ball was placed in another corner. Eleven sequences were recorded with 602 

eleven different actors of both genders comprising a wide range of ages (19-57) and 603 

morphological differences. No instruction was given to the actors further than “go to 604 

the room and wait for 5 minutes and feel free to enjoy the facilities while you wait”. 605 

The resulting variability in the actions performed is depicted in Table 1. 606 

Sequence Age Sex Number of 
actions 

Actor 1 34 M 31 
Actor 2 33 M 25 
Actor 3 35 M 10 
Actor 4 57 F 12 
Actor 5 19 M 9 
Actor 6 19 M 18 
Actor 7 20 F 15 
Actor 8 19 M 9 
Actor 9 22 F 5 

Actor 10 19 M 12 
Actor 11 20 F 9 

Total   155 

Actions Instances 
check watch 4 
cross arms 0 

scratch head 2 
sit down 13 
get up 12 

turn around 18 
walk 53 

wave hand 9 
punch 26 
kick 10 
point 3 

pick up 13 
throw 0 

Table 1: a) Number of actions performed by each actor. b) Number of instances of 607 

the trained actions found in the WaRo11 dataset. 608 

Each of the recorded sequence was manually groundtruthed: first, the video of 609 

interest was segmented into a set of independent actions, then each action was 610 

labelled. Note that the segmentation of a video into independent actions is outside 611 

the scope of this study. Therefore, when testing our algorithms, we processed 612 

manually segmented actions. Readers interested in automatic action segmentation 613 

should refer to (Rui and Anandan, 2002; Black et al., 1997; Ali and Aggarwal, 2001; 614 

Shimosaka, 2007; Shi, 2011). 615 

ii. Results 616 

 617 

a) Performance of the computer vision system 618 

First the CVS was applied to IXMAS sequences using the leave-one-out strategy 619 

followed by (Weinland et al., 2007; Yan et al., 2008; Junejo et al., 2008; Richard and 620 

Kyle, 2009). In each run, we select one actor for testing and all remaining subjects 621 

for training. Secondly, using the whole of the IXMAS dataset for training, the CVS 622 



was applied to WaRo11. Accuracy performances for both experiments are provided 623 

in Table 2. 624 

Table 2. Average recognition rate for all the actions on the datasets obtained by the 625 

computer vision system based on BoW 626 

 IXMAS WaRo11 
CVS: BoW 63.9% 29.4% 

 627 

The BoW based technique displays results comparable to those of the state of the 628 

art on the IXMAS dataset (Nebel et al. 2011). However, when applied to a more 629 

realistic environment, performances decrease considerably. This shows the 630 

limitations of the CVS methodology under real circumstances, when the testing 631 

conditions differs significantly from the training. On the other hand, when 632 

performance is analysed in terms of average cumulative recognition curve (ACR) - 633 

Figure 4, blue -, i.e. percentage that an action is accurately recognised within a set of 634 

estimates,- one can see that considering the first few ranks may improve significantly 635 

accuracy. For example, accuracy would jump from 29 to 66% if the best solution 636 

could be detected within the 6 first estimates. This confirms that additional 637 

information is contained within the action estimation vector generated by BoW, and, 638 

therefore, there is scope to exploit it to improve the initial annotation. This is exactly 639 

what our reasoning system intends to do.   640 



 641 

Figure 4: Blue: Average Cumulative Recognition curve for a number of estimations 642 

from 1 to 13. Red: Recognition rate obtained by our approach depending on the 643 

number of considered action estimates. 644 

b) Performance of the whole framework 645 

The proposed framework integrating AIRS has been tested using the 11 sequences 646 

of WaRo11. Experiments were conducted considering the N={1,3,5,7} most likely 647 

actions estimates – as calculated by CVS - for AIRS analysis. Performance results 648 

are evaluated against the CVS only system in Table 3, where average and 649 

recognition rates per sequence are provided. In addition, they are compared with the 650 

CVS cumulative recognition rate, Figure 4, red. 651 

Table 3. Recognition rates obtained using either CVS or the combination of CVS and 652 

AIRS on WaRO11 dataset.  653 

Actor 1 2 3 4 5 6 7 8 9 10 11 Average 
per action 

CVS 35.5% 16.0% 30.0% 58.3% 44.4% 22.2% 40.0% 15.4% 40.0% 16.7% 33.3% 29.4% 
CVS+AIRS 

(n=1) 
38.7% 24.0% 30.0% 58.3% 44.4% 22.2% 33.3% 30.8% 60.0% 25.0% 33.3% 35.5% 

CVS+AIRS 
(n=3) 

41.9% 28.0% 40.0% 66.7% 44.4% 38.9% 20.0% 30.8% 60.0% 25.0% 33.3% 38.7% 
CVS+AIRS 

(n=5) 
64.5% 52.0% 50.0% 75.0% 55.6% 66.7% 40.0% 30.8% 60.0% 25.0% 33.3% 51.9% 



CVS+AIRS 
(n=7) 

61.3% 40.0% 60.0% 75.0% 55.6% 66.7% 33.3% 30.8% 40.0% 25.0% 33.3% 51.0% 

 654 

These results show a considerable increase of performance due to the inclusion of 655 

the reasoning system, i.e. accuracy raises from 29% to 52%, in the best case. Our 656 

framework outperforms significantly the CVS system, even for the case where only 1 657 

action prediction is considered by the AIRS. Moreover, it can be noticed that 658 

accuracy is only rarely deteriorated by reasoning: the system does not seem to 659 

suffer from either reasoning errors or over reasoning. Only in sequences 7 and 11 660 

performance are either deteriorated or unaffected by the inclusion of the AIRS. 661 

Detailed analysis of these two sequences permits to identify, first, absence of 662 

continuity or causality between their composing actions and, secondly, a high 663 

percentage of unconstrained actions, i.e. actions that are not linked to any other and 664 

that can be performed at any instant (‘cross arms’, ‘check watch’, ‘scratch head’). 665 

These two factors explain why no effective reasoning can be performed to improve 666 

recognition. 667 

A more detailed analysis of the AIRS can be obtained by comparing the performance 668 

of our approach when varying the number of predictions considered in the action 669 

estimate vector. When only considering the most likely action estimate (N=1), the 670 

reasoning system is already able to improve on the CVS. This demonstrates the 671 

value of one of the AIRS reasoning mechanisms, i.e. activity recognition based on 672 

expectations. In this context, the AIRS is comparable to the state-of-art techniques in 673 

video-based systems based on simple ontologies and rules. 674 

 When several action estimates are available, the AIRS’s second mechanism, i.e. 675 

common sense action validation and the coherent assignation of actions to stories, 676 

can be exploited, which leads to deeper reasoning. Performance of the total system 677 



– i.e. 38% and 52% for N=3 and 5 estimates, respectively - compared with those 678 

displayed by the ACR – 40% and 57%- shows that the complete reasoning system is 679 

quite efficient at selecting an action among the N best estimates (see Figure 4, red). 680 

Finally, when more estimates are considered, it seems that the added noise prevents 681 

the reasoning system to further improve accuracy, i.e. 51% for N=7.  682 

Figure 5 provides confusion matrices with (CVS+AIRS for the best case, i.e. N=5) 683 

and without reasoning (CVS only) to visualise improvement on the recognition rate 684 

per action. For many actions, such as ‘sitting down’, ‘getting up’, ‘turn around’, ‘check 685 

watch’ or ‘kick’, the system is able to move from a recognition rate of almost 0% to a 686 

situation where the action is recognised correctly in a majority of instances. This is 687 

particularly remarkable in the case of ‘sitting down’ where the CVS was trained using 688 

sequences of individuals sitting on the floor, whereas in WaRO11, they sit on a chair. 689 

Such achievement could not have been reached without usage of world and 690 

contextual information. As discussed earlier, recognition rate of an unconstrained 691 

action such as ‘scratch head’ does not benefit from reasoning. 692 

 693 

Figure 5. Confusion matrices obtained with CVS (left) and CVS+AIRS (right) 694 

Table 4: Outputs of CVS (N=5) and AIRS for the first 10 actions of WaRo11 seq. 1 695 

 

     



Frames 220-271 271-310 310-344 344-373 373-394 
Ground 

truth 
Walk Pick up Turn around Sit down Get up 

CVS 1 Walk Pick up Kick Sit down Check watch 

CVS 2 Kick Point Point Throw Throw 

CVS 3 Point Throw Turn around Check watch Kick 

CVS 4 Wave hand Scratch head Pick up Pick up Point 

CVS 5 Sit down Sit down Cross arms Cross arms Pick up 

AIRS main 

story 
Walk Pick up Turn around Sit down Get up 

      

 

     
Frames 394-432 432-1243 1243-1276 1276-1326 1326-1533 
Ground 

truth 
Pick up Sit down Get up Pick up Punch 

CVS 1 Pick up Cross arms Punch Pick up Punch 

CVS 2 Get up Point Point Throw Kick 

CVS 3 Throw Check watch Kick Get up Throw 

CVS 4 Scratch head Scratch head Pick up Point Point 

CVS 5 Turn around Sit down Throw Check watch Check watch 

AIRS main 
story 

Turn around Sit down Get up Pick up Punch 

Table 4 illustrates the importance of reasoning to improve performance by showing 696 

outputs of CVS (N=5) and AIRS for the first 10 actions of sequence 1. When CVS 697 

failed to identify the correct actions as its first estimate, AIRS was able to choose the 698 

correct annotations among the other 4 estimates, i.e. ‘turn around’ and ‘sit down’ 699 

actions. Moreover, when none of the CVS outputs was suitable, AIRS managed to 700 

correct those estimates by inferring a new action consistent with common sense 701 

reasoning – ‘get up’ actions. An error of reasoning occurred in the 6th action, where 702 

the AIRS contradicted the correct CVS estimation. This error is explained by the 703 

unexpected presence of a second object on the floor, i.e. a pen, which was not 704 



known by the DSK. Consequently, the rule imposing that a second object could be 705 

picked only after releasing the first one proved invalid.  706 

6. Conclusions 707 

 708 

We present a novel approach for action recognition based on the combination of 709 

statistical and knowledge based reasoning. The inclusion of artificial intelligence 710 

strategies, based on common sense, allows outperforming significantly the state of 711 

the art technique in computer vision when dealing with realistic datasets. Our main 712 

contributions are the creation of the first integrated framework combining computer-713 

vision-based and artificial-intelligence-based action recognition techniques which is 714 

fully context and scenario independent, and the implementation of a common sense 715 

reasoning schema which outperforms machine learning methodologies. 716 

Results are highly encouraging and confirm the validity of our hypothesis: the 717 

computer vision community should not focus exclusively on classical statistical 718 

reasoning, but should integrate ideas and methodologies from artificial intelligence in 719 

order to overcome the limitations of current applications under real-life conditions. 720 
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