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Abstract5

We propose an advanced framework for the automatic configuration of6

spectral dimensionality reduction methods. This is achieved by introducing,7

first, the mutual information measure to assess the quality of discovered8

embedded spaces. Secondly, unsupervised Radial Basis Function network is9

designated for mapping between spaces where the learning process is derived10

from graph theory and based on Markov cluster algorithm. Experiments11

on synthetic and real datasets demonstrate the effectiveness of the proposed12

methodology.13
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1. Introduction17

With the exponential increase of data production driven by applications18

such as the internet, mobile communication, computer vision, medical imag-19

ing, speech recognition and genomics, powerful tools are required by scientists20

to allow the analysis of these data. Since they are usually highly dimensional,21
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dimensionality reduction has become an essential process in the exploration22

of large volumes of multivariate data.23

Dimensionality reduction can be defined as the transformation of high-24

dimensional data, X = {xi}(i=1..N) (xi ∈ RD), into a meaningful and compact25

representation of reduced dimensionality, Y = {yi}(i=1..N)(yi ∈ Rd) where26

d < D (and often d << D), to obtain more informative, descriptive and27

practical data representation for further analysis. This process is achieved28

by eliminating redundancies present in datasets while ensuring the maximum29

possible preservation of information.30

Since most real datasets are highly nonlinear, many nonlinear dimension-31

ality reduction techniques have been proposed. They can be classified in32

two main categories: mapping-based and embedding-based. Mapping-based33

approaches such as GPLVM (Lawrence, 2004) and generative topographic34

mapping (Bishop et al., 1998) use probabilistic nonlinear functions to map35

the embedded space to the data space. Their main limitation comes from36

the computational cost of their learning process which restricts their usage to37

relatively small datasets. On the other hand, embedded-based approaches,38

also called spectral methods, estimate the structure of the data underlying39

manifold by approximating each data point according to their neighbours on40

the manifold. Although these methods do not provide any explicit mapping41

between low and high dimensional spaces, they have proved very popular be-42

cause they can handle very large high dimensional datasets with a reasonable43

computational cost.44

Spectral methods can broadly be divided into three families, i.e. Isometric45

Feature Mapping (Isomap) (Tenenbaum et al., 2000), Locally Linear Embed-46
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ding (LLE) (Roweis and Saul, 2000) and Laplacian Eigenmaps (LE) (Belkin47

and Niyogi, 2001), according to the way data point positions are expressed48

in function of their neighbours. Since they have been a very active area of49

research, many extensions and improvements have been suggested (Choi and50

Choi, 2004; De Ridder et al., 2003; De Silva and Tenenbaum, 2003; Donoho51

and Grimes, 2003; Goldberg and Ritov, 2008; He and Niyogi, 2004; He et al.,52

2005; Kokiopoulou and Saad, 2007; Wang and Li, 2009; Yang, 2003; Zhang53

and Wang, 2007; Zheng et al., 2008). Despite this research effort, these ap-54

proaches still suffer from the fact they rely on a set of values which are chosen55

empirically, i.e. neighbourhood size and mapping function parameters.56

In this paper, we address this fundamental problem by proposing two57

extensions of spectral dimensionality reduction methods allowing their auto-58

matic configuration. First, optimal values of neighbourhoods are estimated59

by adopting mutual information measure (MI) (Cover and Thomas, 1991).60

Secondly, mapping functions are customised to datasets with a novel usage61

of Radial Basis Function network (RBFN) (Poggio et al., 1990), where net-62

work topology is automatically learnt by Markov cluster algorithm (MCL)63

(Dongen, 2000).64

After a detailed description of the main spectral dimensionality reduction65

approaches and their limitations, we describe the new techniques we propose66

to allow their automatic configuration. Finally, they are validated on syn-67

thetic and real datasets. Since spectral dimensionality reduction methods68

derives from either Isomap, LLE or LE, our contribution will be applied to69

these three methods which are used as representatives of all embedded-based70

approaches.71
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2. Spectral dimensionality reduction methods and their limitations72

Spectral or embedding-based approaches model the structure of data by73

preserving some geometrical property of the underlying manifold. While74

the Isomap (Tenenbaum et al., 2000) method attempts to maintain global75

properties, LE (Belkin and Niyogi, 2001) and LLE (Roweis and Saul, 2000)76

aim at preserving local geometry which implicitly tends to keep the global77

layout of the data manifold. After a brief description of these techniques, we78

list the main limitations we address in this paper.79

2.1. Processing pipeline80

Figure 1: Dimensionality reduction using spectral methods.

These methods share the same algorithm structure as illustrated in figure81

1. First, the neighbourhood for each data point is constructed by choosing82

K-nearest neighbours based on Euclidean distance. Then, weights, which83

express the geometrical relationship between each data point and its neigh-84

bours, are determined according to the property to be preserved. In LLE,85

they summarize the neighbours contribution to the reconstruction of a data86

point (Roweis and Saul, 2000). In LE and Isomap, the weights are related87

to the distance between a point and its neighbours using respectively heat88

kernel (Belkin and Niyogi, 2001) and Euclidean distance (Tenenbaum et al.,89

2000). Then, each method optimises its own cost function subject to con-90

straints that make the problem well-posed. In the case of the LE and Isomap91

algorithms, the manifold is approximated, first, by an adjacency graph where92
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nodes correspond to data point and edges represent weights between points.93

A sparse cost matrix is constructed directly for LLE and LE (Belkin and94

Niyogi, 2001; Roweis and Saul, 2000), whereas the Isomap dense cost matrix95

is obtained by calculating geodesic distances between all pairs of points in the96

graph (Tenenbaum et al., 2000). Finally, spectral embedding is calculated97

using the eigenvectors of the cost matrix.98

2.2. Limitations99

The main issue of spectral methods is that the quality of embedded space100

is very sensitive to the choice of free parameters and they do not provide a101

mapping function between low and high dimensional spaces.102

All approaches have two free parameters: ’d’ and ’K’. ’d’ is the dimen-103

sionality of the embedded space and must be known a priori because it is104

used in the minimization process. If the number of dimensions is too low,105

important data features may be collapsed onto the same dimension. ’K’ is106

the neighbourhood size. If it is too small, global feature information is lost107

since the manifold is split into unconnected pieces. If it is too large, the LE108

and LLE assumption that a data point and its neighbours are locally linear109

is not valid. In the case of Isomap, a large K introduces errors in geodesic110

distances.111

Since the effectiveness of a method depends on the choice of these param-112

eters, many techniques have been proposed to estimate automatically their113

optimal values. The optimal dimensionality of the embedded space is de-114

fined as the intrinsic dimension of the high dimensional data. More formally,115

a dataset X ∈ RD is said to have intrinsic dimensionality (ID) equal to d if its116

elements lie entirely within a d-dimensional subspace of Rd (where d << D)117
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(Fukunaga, 1982). Estimation of ’d’ can be achieved using many approaches118

(see (Camastra, 2003) for a detailed review) including maximum likelihood119

estimation (Levina and Bickel, 2005), packing numbers (Kegl, 2003), analysis120

of a geodesic minimum spanning tree (Costa and Hero, 2004), fractal-based121

methods (Camastra, 2003) and eigenvalue-based estimator (Fukunaga and122

Olsen, 1971) (EE). However, none of them has achieved consensus as the123

most accurate method.124

The selection of the optimal neighbourhood size ’K’ is also an open prob-125

lem. The main line of research has focused on assessing directly the quality126

of embedded spaces by a quantitative measure in order to infer the optimal127

value of ’K’. Although many measures have already been proposed, such as128

Residual Variance (Kouropteva et al., 2002; Samko et al., 2006), Spearman129

Rho (Karbauskait et al., 2007; Samko et al., 2006) and Procrustes Analy-130

sis (Goldberg and Ritov, 2009), experiments suggest their accuracy depends131

not only on the choice of intrinsic dimensionality but also on the nature of132

dataset. Consequently, they are not suitable when dealing with complex non-133

linear high dimensional data of a nature, which is different from that they134

have been designated for, e.g. human motion (Lewandowski et al., 2009).135

Finally, an inherent limitation of spectral dimensionality reduction ap-136

proaches is that they do not provide an explicit mapping function between137

low and high dimensional spaces. Such function is essential for ensuring138

continuity of low dimensional representation and projecting data between139

spaces. This issue has been addressed quite satisfactorily by applying Ra-140

dial Basis Function network (Poggio et al., 1990) to approximate the optimal141

mapping function (Elgammal and Lee, 2007; He et al., 2004; Lewandowski142
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et al., 2009). However, the quality of RBFN relies on the careful selection of143

a few parameters which are chosen empirically.144

3. Automatic configuration of spectral dimensionality reduction145

methods146

We contribute to the current state of the art by addressing two essential147

problems: the selection of the optimal neighbourhood size ’K’ and the ab-148

sence of mapping function between spaces. First, we propose to estimate the149

optimal neighbourhood size by assessing the quality of discovered embedding150

spaces using the mutual information measure. Secondly, we overcome the151

deficiency of mapping function by extending advanced RBFN by exploiting152

spectral graphs to design the optimal structure of the network in an unsuper-153

vised manner. The above schemas are integrated into a general framework for154

the automatic configuration of spectral dimensionality reduction methods.155

3.1. Estimation of optimal neighbourhood size156

The optimal neighbourhood size ’K’ can be identified directly by assessing157

embedded space quality. The process is the following. First, data are divided158

into training and testing sets. Then, for a given value of ’K’, dimensionality159

reduction is applied on the training set and a mapping function is built be-160

tween the original and embedded spaces. Finally, test data are projected into161

the low dimensional space and some error metric is calculated. This process162

is repeated for a range of ’K’ values so that the optimal neighbourhood size163

can be identified.164

Since this process requires calculating computationally expensive map-165

ping functions for all possible values of ’K’, quantitative metrics have been166
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proposed to evaluate the quality of an embedded space without mapping.167

The standard procedure of optimal neighbourhood size estimation using a168

quantitative metric is summarized in pseudo-code 1. There are three met-169

rics commonly used. Residual variance (RV) (Kouropteva et al., 2002; Samko170

et al., 2006) expresses how well the distance information is preserved between171

two sets of variables, i.e. it reflects the degree of linear relationship between172

these variables. Spearman’s rho (SR) (Karbauskait et al., 2007; Samko et al.,173

2006) measures the accuracy of the low-dimensional manifold in retaining the174

order of pair wise distances of data points of the high-dimensional. Finally,175

procrustes analysis measure (PA) (Goldberg and Ritov, 2009) reflects the176

matching of two sets of variables in terms of distances. PA determines how177

well linear transformations of the points in one space conforms to the points178

in the second space. Since experiments have suggested that these measures179

depend on the specific nature of datasets (Lewandowski et al., 2009), they180

are not suitable for the automatic selection of the free parameter ’K’ in an181

untested domain.182

Algorithm 1 Estimation of optimal neighbourhood size

Input: high dimension dataset, maximum K (maxK ), ID estimate
Output: optimal K

Find minimum K (minK ) which produces a fully connected graph
for each K in range < minK,maxK > do

Reduce dimensionality of the dataset using a spectral method
Use metric to assess the quality of the embedded space

end for
Select optimal K according to metric

In this work, we tackle this fundamental issue by adopting a metric which183
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can deal with variables without any linear relationship. We propose to use184

the mutual information measure (Cover and Thomas, 1991) which has proved185

to be able to discover even marginal dependency between two spaces of vari-186

ables, since, in contrast to linear correlation coefficients, it is also sensitive to187

dependencies which do not manifest themselves in the covariance. MI is null188

if and only if the two random variables are strictly independent. The first189

idea would be to design a cost function directly in the spectral dimensional-190

ity reduction framework using MI, however since MI expresses relationship191

between two sets of variables rather than individual points, it is not an ap-192

propriate metric for this purpose. As the consequence, we propose to employ193

it in post processing step to evaluate the quality of spaces.194

The most straightforward and widespread approach for estimating MI is195

to partition the data and approximate MI by the following finite sum:196

I(X, Y ) =
N∑
i

N∑
j

p(i, j)log
p(i, j)

px(i)py(j)
(1)

where p(i,j) is the joint probability distribution function, and px(i) and py(j)197

are the marginal probability distribution functions of X and Y respectively.198

This formulation can be equivalently expressed as (Cover and Thomas, 1991):199

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (2)

where H(X) and H(Y ) are the marginal entropies and H(X,Y) is the joint200

entropy of X and Y.201

However, this standard approach can only be applied for D = d = 1,202
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because the estimation of entropy is based on data binning. Since, in our203

framework, we need to estimate MI measure for higher dimensional variables204

(D > 1, d ≥ 1), we calculate the entropy using K-nearest neighbour statistics205

as proposed in (Kraskov et al., 2004). Assuming that some metric is defined206

on the spaces spanned by X and Y, all neighbours of a given data point are207

ranked according to their distance to that point. Then the entropy H(Z),208

where Z ∈ {X, Y }, is estimated by the average distance to the K-nearest209

neighbours, averaged over all z (z ∈ {x, y}). This leads to the following210

equation (Kraskov et al., 2004):211

H(Z) = N−1

N∑
i=1

(
(nz(i) + 1))− 
(N)− log cdz −
dz
N

N∑
i=1

(log �(i)) (3)

Here, nz(i) denotes the number of points which fulfil the condition: ∥z(i)−212

z(j)∥ < �(i) and 
(⋅) is the digamma function (Kraskov et al., 2004). d213

denotes the dimension of z and cdz is the volume of the d-dimensional unit214

ball. Similarly, the joint entropy of X and Y for a given K (Kraskov et al.,215

2004) is expressed by:216

H(X, Y ) = 
(K)− 
(N)− log(cdxcdy)−
dx + dy
N

N∑
i=1

(log �(i)) (4)

Combining equations 2, 3 and 4 results in the expression of multi dimen-217

sional MI:218

I(X, Y ) = 
(K) + 
(N)−N−1

N∑
i=1

(
(nx(i) + 1) + 
(ny(i) + 1)) (5)
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Although mutual information has never been used in this context, the219

use of the multidimensional extension allows MI becoming an intuitive mea-220

sure for analysing the mutual correlation between high and low dimensional221

spaces.222

3.2. Unsupervised mapping223

All spectral approaches suffer from the deficiency of not providing a map-224

ping function. A solution has been to use RBFN based mapping (Elgammal225

and Lee, 2007; He et al., 2004). However, this process relies on manual226

adjustment of its structure according to data. In previous work, we have ad-227

dressed this by introducing unsupervised RBFN (Lewandowski et al., 2009).228

Since that approach has some limitations (that we discuss later), we propose229

a novel method for designing the structure of the network which originates230

from graph clustering theory.231

RBFN from high to low dimensional space is expressed by the following232

over-constrained nonlinear system of equations:233

y = f(x) = B ∗  (x) (6)

where B is a D × L matrix of network weights and vector  (x) is given by:234

 (x) = [�(∥x− c1∥), �(∥x− c2∥), . . . , �(∥x− cL∥)]T (7)

where L is the number of hidden layers in the network, which correspond235

to the coordinates of centres cj and �(.) is a real-valued basis function. We236

exploit Gaussian basis function �(∥xi− cj∥) = e
∥xi−cj∥

2

2�2 , where � denotes the237
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average distance between all centres, because it has excellent approximation238

properties (Poggio et al., 1990). The solution for B can be found by applying239

the Moore-Penrose pseudo-inverse on matrix  (X) in equation 6 and solving240

the obtained linear system of equations.241

The RBFN structure is formed by centres cj which summarize training242

data points in order to provide generalization properties of the network. How-243

ever, the performance of RBFN critically depends upon the chosen centres244

(Chen et al., 1991). K-means clustering (Kanungo et al., 2002) (KMC) and245

rival penalized competitive learning (Xu et al., 1993) (RPCL) are currently246

the most popular and well studied methods which address this task. A key247

drawback of the KMC algorithm is that it requires prior knowledge about248

the correct number of centres. This can be addressed using the RPCL algo-249

rithm which is capable of finding the optimal localisation of centres as well as250

their correct number L in an automatic way. First, L’ centres are randomly251

initialised (L’>>L). Subsequently, in each iteration, the algorithm randomly252

selects a sample s from the training set and moves the closest centre (the so253

called competition winner) towards the considered point s by a weighted dis-254

tance w1. In the same step the second closest centre (or rival) is pushed away255

from the sample s by a weighted distance w2 (where w1>>w2 ). Learning256

rates, i.e. w1,w2 are monotonically decreased after each iteration. The entire257

procedure is repeated until its converges or reaches a given threshold. This258

mechanism allows automatic determination of the centres’ positions by locat-259

ing them at the core of data point clusters and gradually driving unrequired260

centres away from those clusters.261

In earlier work (Lewandowski et al., 2009), we automated the mapping262
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process by applying RPCL for training of RBFN. However, RPCL, as KMC,263

depends on the initial random localization of centres and relies on the Eu-264

clidean distance, which is not the most appropriate metric to model high265

dimensional relationships (Aggarwal et al., 2001). In order to improve ac-266

curacy, we extend our idea of unsupervised mapping learning and propose267

to use the Markov cluster algorithm (MCL) (Dongen, 2000) to identify the268

suitable number and localization of centres automatically by exploiting the269

adjacency graph constructed during spectral reduction of dimensionality. As270

it will be demonstrated in the results section, the computational cost of a271

mapping learning process is greatly reduced and the obtained mapping ex-272

hibits better accuracy in comparison to standard approaches such as KMC273

and RPCL.274

At the heart of the MCL algorithm (Dongen, 2000) lies the idea to sim-275

ulate flow within a graph: flows are promoted where current is strong and276

demoted where current is weak. Flow simulation is achieved by transform-277

ing a graph into a Markov graph using the standard definition of a random278

walk on a graph. Then a flow is defined by two simple algebraic operations,279

i.e. expansion and inflation, which are applied connectively, so that the flow280

becomes thicker in regions of higher current and thinner in regions of lower281

current.282

According to this paradigm, if natural groups are present in the spectral283

graph obtained in the first step of dimensionality reduction, then, current284

across borders between different groups will wither away. As the result, a285

fully connected graph is divided into few subgraphs (figure 2), thus revealing286

the optimal number L as well as coordinates of clusters cj. Application of287
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Figure 2: 2D representation of successive stages of flow simulation using the
MCL process for discovery of the localisation and the number of centres in
RBFN.

this procedure enables the discovery of more representative clusters of high288

dimensional data and subsequently customise RBFN structure to dataset in289

an automatic and efficient manner.290

4. Experimental results and discussion291

4.1. Datasets292

The proposed framework was validated with both artificial and real datasets.293

Standard datasets were selected to extensively evaluate the performance and294

robustness of the proposed methodology in different scenarios. Figure 3 illus-295

trates the datasets used in this work. Since the intrinsic dimensionalities of296

the digits and face datasets are unknown, we used both low and high values297

of their estimates in order to perform our experiments.298

The ’swissroll’ dataset is a synthetic and nonlinear example of a two299

dimensional flat submanifold which lies in a three-dimensional space. This300

dataset exhibits significant disagreement between geodesic and Euclidean301

distances (figure 3a). 2000 points were randomly sampled from the manifold302

and used in all our experiments. In addition, we generated a second smaller303

dataset consisting of 1000 points (denoted by a star in our experiments) in304
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Figure 3: Datasets used in the experiments: from left to right, ’swissroll’
manifold, handwritten digits and face images.

order to compare Isomap results with those of the original Isomap paper305

(Tenenbaum et al., 2000).306

The MNIST dataset (LeCun, 2000) consists of handwritten characters307

images containing digits from 0 to 9 (figure 3b). The size of each image is 28308

x 28 pixels, with 256 gray levels per pixel. Thus, each image is represented by309

a 784-dimensional vector. Due to computational and memory constraints, in310

our experiments we used a subset of the MNIST database consisting of 6000311

images. According to (Camastra and Vinciarelli, 2001), the optimum ID of312

handwritten digits is 7, whereas the upper bound of the ID as determined313

by EE equals 10.314

The ORL (formerly Olivetti) face database contains 400 images of 40315

distinct subjects (Samaria and Harter, 1994) (figure 3c). All images were316

captured against a dark homogeneous background with the subjects in an up-317

right, frontal position, with tolerance for some side movements. There are318

variations in facial expression (open/closed eyes, smiling/nonsmiling), and319

facial details (glasses/no glasses, different skin colours). The images are grey-320

scale with a resolution of 64x64 pixels which gives a 4096 dimension feature321

vector. The analysis of relation between recognition rates and dimensionality322
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of embedded space in (Yin et al., 2008) suggests a value of 10 as the optimal323

ID for this dataset. The upper bound of the ID as determined by EE equals324

40.325

4.2. Experiments326

All experiments were performed with Isomap, LLE and LE using K values327

in the range ⟨4, 30⟩. In multidimensional spaces, geodesic distances are used,328

whereas on the plane we employ Euclidean distances as suggested in (Samko329

et al., 2006).330

First, we evaluate qualitatively the novel MI estimator against current331

approaches, i.e. Residual Variance, Spearman Rho and Procrustes Analysis332

measures. This was performed using the synthetic dataset for which the333

underlying structure is known so the quality of embedded space can be judged334

visually.335

Then, two classical pattern classification problems, face and handwritten336

digit recognition, are considered in order to analyze the quantitative perfor-337

mance of the MI metric. We do not perform any preprocessing or normal-338

ization of the data in order to prevent any information lost. It is important339

to note that, in this work, we did not focus on designing a state of art clas-340

sification system, but to compare existing metrics with the one we propose341

using on a standard classification framework based on a real application.342

Finally, in the last experiment we show superiority of graph based RBFN343

in comparison with standard RBFN. This is achieved by repeating the classi-344

fication experiments with digits and faces recognition using the new mapping345

function whose structure is inferred automatically from the spectral graphs.346
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4.2.1. Dimension reduction of ’swissroll’ dataset347

Table 1 presents the low dimensional spaces of ’swissroll’ dataset produced348

by Isomap, LE and LLE using the estimated neighbourhood sizes calculated349

by RV, SR, PA and MI.350

In all cases, the MI measure was able to identify very good low dimen-351

sional representation of ’swissroll’ dataset, i.e. embedded space which man-352

ages to unroll manifold and preserves local structure. Moreover, estimated353

values of K using MI are in agreement with parameters which were recom-354

mended in the original papers (Belkin and Niyogi, 2001; Roweis and Saul,355

2000; Tenenbaum et al., 2000). Although, other measures usually select356

reasonable low dimensional representations, their quality is not consistent.357

For instance, the local structure is distorted in most experiments involving358

RV/SR. Although PA seems to behave similarly to MI, in the case of LLE359

the very different neighbourhood size returned by PA leads to the production360

of an embedded space of inferior quality.361
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Method Coefficient
Visualization

Coefficient
Visualization(Recom- (Estimated (Estimated

mended K) K) K)

LLE
(20)

(Roweis and
Saul, 2000)

RV SR

(11) (22)

PA MI

(8) (20)

LE
(5-15)

(Belkin and
Niyogi, 2001)

RV/SR PA/MI
(8) (5)

Isomap
(-)

RV SR/PA/MI

(21) (18)

Isomap*
(7)

(Tenenbaum
et al., 2000)

RV PA/MI
(9) (7)

SR

* denote the ’swissroll’ dataset with 1000

points instead of 2000 points

(4)

Table 1: The low dimensional spaces of ’swissroll’ with estimated and rec-
ommended neighbourhood sizes for Isomap, LE and LLE according to coef-
ficients RV, SR, PA and MI.
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4.2.2. Classification evaluation362

The recognition of either digits or faces is performed according to the363

10-fold cross validation strategy, where we divide a dataset into ten distinct364

partitions. For each partition, we reduce dimensionality of remaining dataset365

and train RBFN with the standard RPCL algorithm. Then, each partition366

is projected into the low dimensional space and classification is performed367

using a first nearest neighbour classifier (Ho, 1998). Finally, classification368

accuracy is calculated by averaging over the ten partitions. For each dataset,369

estimation of optimal neighbourhood size for dimentionality reduction is cal-370

culated using RV, SR, PA and MI. Moreover, the actual optimal K, ’Opt’,371

is calculated experimentally by an exhaustive evaluation of classification ac-372

curacy for all values of K within the range ⟨4, 30⟩. In addition, using that373

value, we evaluate the classification accuracy of the scheme, ’Opt*’, which374

includes graph-based RBFN (G-RBFN). Tables 2 and 3 show the results of375

these experiments which were conducted with two sets of IDs as defined in376

section 4.1. Note that the huge computational cost of applying PA on the377

very high dimensional faces dataset (dimensionality of 4096) did not allow378

us to obtain the results for this measure using our processing capabilities379

(16-node cluster).380
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ID RV SR PA MI Opt Opt*
Iso

10
88 88 88 88 89 90

LLE 62 63 59 78 78 82
LE 79 79 80 80 80 84
Iso

7
85 82 84 85 85 87

LLE 56 63 53 74 74 77
LE 75 75 74 76 77 80

Table 2: Percentage accuracy of hand-
written digits recognition.

ID RV SR PA MI Opt Opt*
Iso

40
76 73 - 77 77 77

LLE 78 78 - 80 80 80
LE 67 67 - 67 68 73
Iso

10
65 57 - 76 76 76

LLE 55 55 - 61 62 62
LE 62 50 - 63 63 63

Table 3: Percentage accuracy of faces
recognition.

In agreement with our previous experiments, neighbourhood sizes esti-381

mated by the MI measure produce consistently better accuracy than those382

suggested by other metrics regardless of the chosen ID. Moreover, it allows383

classification performances which are either optimal or near-optimal for a384

given dimensionality reduction method. Results also reveal that unlike LLE385

and Isomap, LE is not very sensitive to neighbourhood size selection. As386

expected, decrease of ID results in a decline of accuracy since more dis-387

criminative information is discarded during dimensionality reduction. Two388

dimensional visualization of the best low dimensional space obtained with389

Isomap for the digit dataset is presented in figure 4.390

Regarding the efficiency of graph-based RBFN, tables 2 and 3 show that391

this new scheme improves significantly the quality of the mapping produced392

by standard RPCL RBFN. Further comparison between those two mapping393

methods is provided in figure 5, where classification accuracy and processing394

time are measured for various sizes of the digits dataset. Here, LE is used395

for dimentionality reduction as a representative of spectral methods.396
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Figure 4: Two dimensional visualization of the best low dimensional space
obtained with Isomap for MNIST data subset.

Figure 5: Classification processing time (left) and accuracy (right) compar-
isons between graph-based RBFN and standard RPCL RBFN according to
digits dataset size (ID=10).

First, whatever the size of the training set, classification accuracy using397

graph-based RBFN is higher than for standard RBFN. Secondly, graph-based398

RBFN is computationally very efficient since the learning process time tends399

to increase linearly with the size of the database, while it grows quadratically400

when it is performed using the RPCL procedure.401
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4.3. Discussion402

All experiments demonstrate that MI is a better metric to estimate neigh-403

bourhood size than currently used measures. Not only are embedded spaces404

produced by MI visually convincing, but our quantitative study, i.e. clas-405

sification experiments, confirm its superiority since it consistently provides406

better accuracy regardless of the estimated ID. Moreover, unlike PA, MI407

proved able to handle very high dimensional datasets. Our quantitative ex-408

periments also validate our proposal of using graph-based RBFN to pro-409

vide mapping between embedded and data spaces. This scheme outperforms410

significantly standard RBFN mapping in both accuracy and computational411

efficiency when combined with spectral dimensionality reduction methods.412

Although we used classification experiments to validate quantitatively the413

value of our contribution to spectral dimensionality reduction methods, our414

aim was not to produce a state of the art classifier, but to demonstrate that415

our innovations could be applied successfully to representatives of the three416

main spectral families, i.e. Isomap, LLE and LE. We would suggest readers417

with a special interest in classification to apply our advanced techniques to418

spectral methods which were developed especially to handle that task. They419

include discriminant Isomap (Yang, 2003), supervised LLE (De Ridder et al.,420

2003) and semi-supervised LE (Zheng et al., 2008).421
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5. Conclusions422

In this paper, a framework has been proposed to configure automatically423

spectral dimensionality reduction methods. This is achieved by, first, es-424

timating the optimal neighbourhood size. We introduce the MI metric as425

a powerful alternative to existing techniques. Secondly, RBFN based map-426

ping between spaces has to be learnt in a unsupervised manner. Although427

the RPCL algorithm is the standard approach, we enhance significantly the428

learning process by using the efficient graph based MCL algorithm. Our429

contributions have been validated qualitatively and quantitatively using var-430

ious datasets. Results demonstrate that neighbourhoods selected by the MI431

metric allow spectral dimensionality reduction methods to produce better432

quality embedded spaces. Moreover, our new mapping functions improve433

both mapping accuracy and computational efficiency.434
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