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ABSTRACT

Findings from the current UK national research psogme, MEDUSA (Multi Environment Deployable Univalts
Software Application), are presented. MEDUSA britggether two approaches to facilitate the desigancautomatic,
CCTV-based firearm detection system: psychologidal-elicit strategies used by CCTV operators; ancthimee
vision—to identify key cues derived from camera geeg/. Potentially effective human- and machine-tiasteategies
have been identified; these will form elementshef final system. The efficacies of these algorittinage been tested on
staged CCTV footage in discriminating between fines and matched distractor objects. Early resuitkicate the
potential for this combined approach.
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1. INTRODUCTION

In the UK there are tight restrictions on the pasg® and carrying of firearms such that the adaofying a firearm in
a public place is almost always illegal. Eventbere are concerns that firearms are frequentigethin public places
[1]. The UK has an extensive CCTV infrastructudgickh monitors public space. The CCTV cameras e$¢hnetworks
are well located to act as sensors in the detedidivearms carried on the street [2]. Howevéere are many more
cameras than CCTV operators [3]. Consequently, \CGperators are unable to monitor all cameras, temtly and it
is, therefore, desirable to automate the detecifdinearms via CCTV and to alert CCTV operator$yomhen necessary
[4]. The present work is part of the MEDUSA prdjgd] which aims to combine human- and machinexasti
strategies in the design of a system to autométicidtect firearms via CCTV. This article descsbghe design,
training, and testing of a prototype image processigorithm for the automatic detection of firearim CCTV footage.

1.1 The assessment of human approaches to detectingefarms in CCTV footage

Previously, mock CCTYV footage of people carryingdirms and closely matched innocuous objects waesrgted and
used to evaluate strategies used by CCTV operatothe detection of concealed and unconcealed rfitga[1].
Effective strategies for the detection of unconedafirearms were elicited through self-report. degmlly,
concentrating on the visible, physical propertiéshe object in the hand and also upon the demeaopwverall
behaviour of the surveillance target were deterthiteebe most effective in the detection of uncoreddirearms. The
more tangible of these visual cues were of padicttlevance to the design of an image processguayithm for the
detection of firearms: the size, shape, and cadéan object held in the hand. The validity ofsbeues was supported
by additional, empirical evidence. An analysisvisual search patterns in still frames capturedhftbe mock CCTV
footage, measured using an eye-tracker, reveaktdwhen searching for an unconcealed firearm peopieentrate
their attention on the hands of a surveillancedagff]. Although, this empirical evidence was lthe& mock CCTV
footage, it also concurred with indications fronc@ants and recordings of real-life detections mddims via CCTV. A
review of real-life CCTV footage of firearms offeagand interviews with CCTV operators revealedliamee upon



spotting the visible, physical characteristicshad firearm, which was typically held in the handacfurveillance target
[2]. A similar conclusion was drawn on the badisn analysis of logs of all CCTV incidents invalgi the proactive
detection of firearms in a two-year period at a ®@&bntrol room which serves a large UK city [1].

Subsequently, a machine-vision algorithm was desigto facilitate the automatic detection of firearim CCTV
footage. This algorithm incorporated pointers vkt from the findings of the research on humanalisuspection
strategies in the detection of firearms. Essdutittie algorithm was designed to locate the sllargie target in mock
CCTV footage and then attempt to detect a fireacarried on the person, on the basis of its visilpleysical
characteristics.

1.2 The design of a firearm detection algorithm

The Scale-Invariant Feature Transform (SIFT) [65\@dopted as a means of recognising a firearmT Blwidely used
for the purpose of object recognition in computision. It describes objects in an image usingtafscale, translation,
and rotation invariant local features. These femtiare robust to changes in illumination, nois&jomchanges in
viewpoint, and partial occlusion. Therefore, SWwduld seem an appropriate choice for the basisnadlgorithm that
would operate on CCTV imagery, as such images &&n @ number of viewpoints and visual conditioms gpically
suboptimal. SIFT features are represented by votdgection bins computed at salient points whaeh located at the
maxima and minima of the Difference of Gaussiahsy@tiple scales. The algorithm must learn thETSleatures for a
given object from a set of training images of tbbject. Then, other examples of that object caddiected in further,
test imagery if there is a similar feature respdmetgveen an area in the test image and the tragasimples.

SIFT can give false alarms and the probability délae alarm increases with the amount of imaga &wewhich it is

applied. Therefore, it is desirable to restrict #irea of image analysed to a specific Region wfrést (ROI). This
precaution also reduces computation time. In thegery used in the present study (mock CCTV fogtae firearm,

if present, was carried upon a lone person who walking against a static background. Thus, the R@$ defined

using motion segmentation. When applied to a vitgat, a motion segmentation algorithm isolatesyimg objects

(referred to as the foreground) from the imagesotidh segmentation uses a Gaussian Mixture Modeleszribe the
probability distribution of static scenes (refertedas the background), allowing moving object®doidentified as the
parts of the image that do not fit the model [7hwéver, the segmented foreground usually contaimganted moving

elements. In particular, in the present sequetieesurveillance targets cast shadows. Conseguéml ROI is further
refined using a simple method to remove shadow®lpiwhose hue, saturation and intensity valuéotdabkide of a set
of predefined thresholds are discarded. Findllg,ROI is derived by enclosing the remaining fooeigd in the smallest
rectangle that will accommodate it. Figure lauead the original image with the eventual ROI iatkel as rectangle
drawn about the surveillance target. Figure 1lhadephe foreground region extracted using motiegnsentation and
shadow removal, again with the ROI indicated ataregle drawn about the surveillance target.
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Figure 1: (a) The original image with the eventl@ll shown as a white rectangle, (b) the foregrodtat enotion
segmentation and shadow removal with the ROI shannwahite rectangle.

Figure 2 summarises the automatic firearm detectigarithm. Initially, the person to be inspectedthe presence of a
firearm is isolated within a close fitting ROIl. @HROI is defined as the smallest rectangle capablenclosing a



foreground area that was derived by motion segrtientand then shadow removal. Then the ROI isyeeal for

physical features that are indicative of a firearttempts to detect a firearm are made by matcBilt§ features to the
features of the firearm templates on which the SHfgorithm was trained. Subsets of the mock CCodtdge,

described in previous work [1], were used to tramd then test the performance of the algorithme pérformance of
the algorithm was indexed in terms of sensitivitythe firearm and was then compared with humanopsence in

firearm detection.

> Motion > Shadow > Define region > SIFT firearm
CCTV footage segmentation removal of interest detection

Figure 2. Summary of the firearm detection algonith

2. METHOD
2.1 Mock CCTYV footage

A detailed account of the full set of mock CCTV fage generated for the MEDUSA project is given wlse [1].
Briefly, the subset of the footage considered ir firesent study comprised 6-second video clipsndividual
surveillance targets walking whilst carrying anegdtj either a firearm or an innocuous object matdbethe firearm for
approximate size, weight, and colour (a plastialdribottle filled with a dark-coloured liquid). @&hpresent work
concerns only those clips in which the firearm ottle was held in plain view in the hand, positidneetween the
surveillance target’s body and the camera useddord the footage. The camera was positioned gootituce a view
that might be obtained from a CCTV camera: an ééxljahree-quarter angle view of the walkway. Thenera was
positioned at a height of 2.8 metres, approxima@eymetres from the centre of the walkway alongée subtended at
an angle of 50to the backdrop of the walkway. The camera vieag woomed-out to show 13.5 metres of walkway. In
total, 288 video clips contributed to the subsetootage used to train and test the firearm detedaigorithm: 72 clips
of people carrying unconcealed firearms and 21fsctif people carrying unconcealed bottles. Tweliféerent
surveillance targets were filmed to produce thadeovclips. The clips involved three sizes ofdima (a .32 calibre
revolver, a Glock automatic pistol, and a sawnstibtgun representing small, medium, and largerfinsaespectively).
Each type of firearm was matched to one of thraddsofor weight and size. Surveillance targetsexfdmed walking
towards and away from the camera to produce veatidldorsal views. The various visual conditiomsendistributed
equally across surveillance targets (1 to 12), si@i/the surveillance target (ventral, dorsal), amdhe appropriate
proportions across object types (ratio: 1 fireaBniottle) at each object size (small, medium, [argkn example video
clip involving a ventral view of a surveillance get walking whilst carrying an unconcealed fireafthe Glock
automatic pistol) is available in a prior publicati[1].

2.2 SIFT training

In order to train the SIFT portion of the firearratéction algorithm, 100 gun templates were manuaibpped from
frames of those mock CCTV clips that involved &dim. This training set was restricted to mock €Gdotage that
involved surveillance targets 1 to 5. Ten tem@atere extracted from each surveillance targetsafge to include a
variety of firearm orientations and camera vie\lgsamples of the firearm templates are shown infei@u
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Figure 3. Examples of firearm templates.

2.3 Firearm detection algorithm testing

Fourteen clips of mock CCTV footage involving sullemce targets 6 to 12 were used to test the riilnedetection
algorithm. These clips were divided equally amorsgsveillance targets in terms of object typee@imm, bottle). The



performance of the algorithm was assessed in tefregnsitivity to the firearm across the seven sesteillance targets.
Sensitivity was calculated on the basis of theddatised difference between the probability oftaahd the probability
of a false alarm (See Equation 1). In calculatihgextreme values of, which occur when the probability of an event is
either 1 or 0, have been curtailed. Whefevent) = 1z(p(event)) has been assigned a value of 4 and wifevent) =

0, z(p(event)) has been assigned a value of -4.

TP: number of true positives
FN: number of false negatives
FP: number of false positives
TN: number of true negatives

p(hit) = TP / (TP + FN) (1)
p(false alarm) = FP / (FP + TN) (2)
d’ = z(p(hit)) — z(p(false alarm)) (3)

Equation 1. The calculation of sensitivity to firearm.

Thus, for each of the seven test surveillance tayghe performance of the algorithm was assessddrins of the
probability of a hit, the probability of a falseaai, and sensitivity to the firearm in any giveanfie. The performance
of the algorithm was then summarised in terms cdmgensitivity and standard deviation across sllewee targets to
give an estimate of how the algorithm might perfama population of surveillance targets. It wantpossible to test
the hypothesis that sensitivity is significantlyoab zero and, therefore, that it can be expectatktect firearms in a
population of surveillance targets. This was dbpecalculating where zero lies on the normal prdigtdistribution
for the algorithm’s sensitivity across surveillaraegets.

2.4 Human performance

The abilities of CCTV operators to detect fireatmase been tested in prior work using the currentkr@CTV footage
[1]. This data set was used to derive the seitstivof the CCTV operators who viewed an experitaeoondition
involving only unconcealed firearms € 8). The CCTV operators recruited to this caoditvere all engaged in public
space surveillance (men; age range: 18 — 57 y®hrs40,SD = 11; range of years of experience as a CCTV dpera
0.33 - 19M = 5,9D = 7; range of hours per shift spent monitoring eeam: 1 — 12M = 7,SD = 4). For the purposes of
the present study, the performances of these ohai$ were indexed as the probability of a hit,ghebability of a false
alarm, and sensitivity to the firearm (see equafiprvhen carried by surveillance targets 6 to These values were
used to estimate performance across the populafid®@CTV operators for comparison with the perforearof the
firearm detection algorithm.

2.5 Comparison between human and machine performance

It is noted that human sensitivity to the fireamttie mock CCTV footage is based on a decision raftée viewing an
entire clip of the surveillance target, rather tramn a frame-by-frame basis. Therefore, to fat¢dita comparison
between human and machine performance it was alsessary to calculate the sensitivity of the atharion the basis
of a decision criterion that could be applied & #nd of a clip. The decision of the algorithmréport whether a
firearm is present or absent was based on the pgiopmf frames in which a firearm was detected éthler or not a
firearm was actually present) for each surveillatazget. Decision criteria were calculated onlihsis of the Receiver
Operator Characteristic (ROC) of the algorithm:dzhen the probability of a hit (sensitivity) andetprobability of a
false alarm (1 — specificity) associated with th®portion of frames in which a firearm was detecfed each
surveillance target. (Please note that the defimibf sensitivity for the purposes of the ROC & the same as the
definition of sensitivity associated with d’.) Aruitable, optimal decision criteria were identifien the basis of the
level of sensitivity (d’) to the firearm that thepnferred and their associated hit and false alates. These values
were compared with human performance by calculatihgre the sensitivity, hit rate, and false alaate values lie on
the normal probability distribution for the appri@te variable amongst CCTV operators.



3. RESULTS
An a-level of .05 was adopted as the threshold foriig@mce (* = significant).
3.1 Machine performance (frame-by-frame)

The data relating to dp(hit), andp(false alarm) across surveillance targets exhihit@anality (Shapiro-Wilk tests: d’
W(7) = 0.892p = .288;p(hit) W(7) = 0.971p = .909;p(false alarmW(7) = 0.953p = .759) and so were subsequently
described using parametric statistics (see TableThe mean sensitivity of the algorithm was ngn#icantly greater
than zero, but thp-value did approach thelevel (difference = 1.48D, p = .069; based on the standardised difference
between mean sensitivity and zero).

Table 1. Firearm detection algorithm performancedrame-by-frame basis: the means and standardtidas of the
probability of a hit, probability of a false alaramd sensitivity in firearm detection across sulaece targets

p(hit) p(false alarm) d
M D M D M D
0.24 0.08 0.13 0.05 0.43 0.29

3.2 Human performance

The data relating to dp(hit), andp(false alarm) across CCTV operators exhibited néitynéShapiro-Wilk tests: d’
W(8) = 0.870,p = .151;p(hit) W(8) = 0.913p = .378;p(false alarmW(8) = 0.872p = .158) and so were subsequently
described using parametric statistics (see Table 2)

Table 2. Human performance: the means and staw@aidtions of the probability of a hit, probalilitf a false alarm, and
sensitivity in firearm detection across CCTV opersitor

p(hit) p(false alarm) d
M D M D M D
0.90 0.07 0.17 0.16 3.01 0.90

3.3 Comparison between human and machine performance

The ROC of the firearm detection algorithm was ghted @, = 0.88,SE = .088,p = .015*) and plotted (see figure 4).
On the basis of the ROC of the algorithm, two deniriteria were found to offer maximal sensitwib the firearm.
These criteria are highlighted in italics in TaBleCriterion 1: report that a firearm is presdra firearm is detected in a
0.13 or lesser proportion of framegxhit) = 1.00,p(false alarm) = 0.43, d’ = 4.18. Criterion 2: refpthat a firearm is
present if a firearm is detected in a 0.22 or gneptoportion of frameg(hit) = 0.57,p(false alarm) = 0.00, d’ = 4.18.
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Figure 4. Empirical ROC plot for the firearm detentilgorithm.

The parameters of criterion 1 and criterion 2 wasmpared with human performance by calculating @libey lie on
the normal probability distribution that descrilthe mean and varaince in that parameter amongsvGpérators. The
maximal sensitivity of the algorithm (d’ = 4.18, ieh was associated with both criterion 1 and doter2) was not
significantly different from that exhibited by CCTaperators = 3.01,9D = 0.90; difference = 0.88D, p = .202). In
terms of the probability of a false alarm, compa@®dCTV operatorsM = 0.17,SD = 0.16) the probability of a false
alarm did not differ significantly from that obsed using criterion 1p(false alarm) = 0.43; difference = 0.86B, p =
.264) or criterion 2({(false alarm) = 0.00; difference = 1.88, p = .144). However, in terms of the probabilityaohit,
compared to CCTV operatorM(= 0.90,SD = 0.07) the probability of a hit was significantijgher using criterion 1
(p(hit) = 1.00; difference = 11.88D, p = .000*) and significantly lower using criterion(@(hit) = 0.57; difference =
12.299D, p = .000%).



Table 3. Decision criteria (proportion of framaswhich a firearm is detected) and sensitivitiesoamted with the firearm
detection algorithm empirical ROC plot

Decision criterion Sensitivity 1 — Specificity d'

proportion of frames p(hit) p(false alarm)
0.00 1.00 1.00 0.00
0.07 1.00 0.86 2.93
0.10 1.00 0.71 3.43
0.12 1.00 0.57 3.82
0.13 1.00 0.43 4.18
0.15 0.86 0.43 1.25
0.17 0.86 0.29 1.63
0.18 0.71 0.29 1.13
0.19 0.71 0.14 1.63
0.22 0.57 0.00 4.18
0.27 0.43 0.00 3.82
0.29 0.29 0.00 3.43
0.33 0.14 0.00 2.93
1.00 0.00 0.00 0.00

4. DISCUSSION

If the firearm detection algorithm is employed oframe-by-frame basis then mean sensitivity tofttearm is above
zero, but not significantly so. This indicatestthdthin the population of surveillance targetsnfravhich the current
sample was drawn, the algorithm’s ability to detadirearm on a frame-by-frame basis is at chaneewever, the
results are more promising if the decision as tetiver or a not a firearm is present is made aétiaeof the clip on the
basis of the proportion of frames in which a fireawas detected. Under these circumstances theitalgohas an
overall accuracy of 88% (based on the area undeRtBC). Further the algorithm can be tuned to afnsvo criteria

that provide maximal sensitivity at a level equeralto, but numerically higher than, the mean lexdlibited by CCTV
operators.

Thus, the algorithm can provide surveillance foedrms at a level of sensitivity similar to thafeoéd by human-
mediated surveillance. This is quite a feat ashthman visual system is exceptionally adept at athjecognition.

Automatic surveillance for firearms has further &fts in facilitating constant monitoring over arda number of
cameras [8]. However, the algorithm is not intehdie replace human-mediated surveillance for firear Rather, it
could support the work of CCTV operators by alertthem to the presence of a firearm in camera vibasthey are
unable to attend to. It is noted that careful ateration should be given to the decision critenised by the algorithm
in deciding whether or not to report the preserfca firearm. Based on the proportion of detectipas frame over a
given time period, two decision criteria identifibgre conferred maximal sensitivity on the algarith One had a
perfect hit rate that was significantly higher thithat observed amongst CCTV operators, but this eidgined at the
expense of a false alarm rate of 43%. A high falaem rate in an automatic detection system camepunacceptable to
those operating a CCTV network [9]. Additionaliy,terms of firearm detection, a false alarm cduwde very serious
consequences. Consequently, a second, equallitigersut more conservative firearm detection ciite might be

considered instead. This criterion had a hit th# was significantly lower than that exhibited ®ZTV operators, but
the false alarm rate was at zero. Thus, whilstesbraarms might be missed, no one would be tadgeteecessarily.



However, the algorithm does require improvemertr iRstance, ideally the algorithm would providéaiele, real-time,
frame-by-frame firearm detection. Thus, a CCTVrapar could be alerted at the earliest opportuaitgt even a single-
frame glimpse of a firearm could result in a valgtection. As noted above, the algorithm is npiatde of this level of
performance at the moment, but it did approachaené-by-frame firearm detection sensitivity that veagnificantly
greater than chance. Consequently, it might beriefl that the present form of the algorithm haemal. If the
manner in which the algorithm misbehaved is exaniitds possible to assess how it might be impdov®n a number
of trials the ROI was inaccurately located and esieed, probably reflecting failures of motion semtation and
shadow removal. On some trials, false detectiasived that were not associated with the obje¢hénhand, these
types of false alarm become more likely as the B&$ larger. The use of a smaller, more precisede@d solve this
problem. As the object in the mock CCTV footageswadways carried in the hand, the ROI could bengefion the
basis of a hand detection algorithm [10]. Thisrapph might also have validity beyond the mock COddtage used
here because analyses of real-life CCTV incidamislving firearms indicate that, when in view, tfiearm is almost
always carried in the hand [1, 2]. An additiondficulty for the algorithm is that the surveillaed¢arget appears small
in the camera view and the pixel resolution of dbgect in the hand is rather poor. This type @wis typical of that
offered by a zoomed-out CCTV camera, but a lowltgmm hampers the efficacy of SIFT template matghand results
in misses and false alarms. The poor resolutidered by the zoomed-out view could be addressedftgr
identification of the ROI, the camera was then mattically zoomed in on the ROI. This would incredlse resolution
available for SIFT template matching. The automabntrol of pan-tilt-zoom cameras has been imptaat for
instance, for the purposes of tracking people drtdining close-up shots of the face [11].

Further refinements would be required if the aldponi is to work on complex, real-life CCTV footagEor instance, in a
scene with multiple moving elements, motion segrugon would not be appropriate for selecting thevsillance
target. Rather, people in the image might be ifledtusing a skin detection algorithm [12, 13].dd\tionally, there
might be multiple, potential surveillance targetshie same view. Perhaps the algorithm can idetitdse targets most
likely to have a firearm on the basis of a singterfe exposure in order to prioritise resourcesenTihmight be possible
to track these targets and obtain correspondenossasubsequent frames [14-19]. This would allb& more robust
version of the algorithm, which applies a decistoiterion after a defined number of frames, to ppliad to real-life
CCTV footage.

In summary, the firearm detection algorithm migbguire a number of alterations in order to fad#itaeliable,
instantaneous firearm detection or to operate aitliie CCTV footage. However, these refinememtaite primarily to
locating a surveillance target and optimising tf@l.R The basis of firearm recognition within thgadithm, SIFT, has
proven effective despite the visual limitationgGE TV footage.

5. CONCLUSION

An attempt has been made to combine human- andineabhsed approaches in the design of an algotithautomate
the detection of firearms via CCTV. In previousrwon human approaches to firearm detection it fvasd that the
most effective strategy for a CCTV operator wasdncentrate on the visible, physical propertiearobbject held in the
hand of a surveillance target. This finding waetaas the basis for the design of the algorittbmnsequently, the
machine-based approach adopted SIFT in order tiitdbe object identification.

The resultant algorithm has a high level of sevisjtito firearms in CCTV footage. Indeed, the lewé sensitivity is
equivalent to that exhibited by CCTV operatorsleast in terms of the mock CCTV footage employedhim present
test. Importantly, in terms of firearm detectidthe parameters of the algorithm can be tuned teeptefalse alarms
whilst maintaining sensitivity to firearms. Essalty, the present work demonstrates the poterfioal SIFT to
distinguish between a firearm and similar objeatere in low resolution CCTV footage with suboptimakual
conditions. It now remains to develop the algaritfor use in real-life CCTV footage. In order txilitate the further
development of the algorithm, the collection oflfida CCTV footage of firearms offences is undegwa collaboration
with UK police forces and council-managed CCTV cohtooms. Ultimately, the intention is to develap algorithm
that can constantly monitor a CCTV network for dines and alert CCTV operators when appropriate.
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