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Abstract— Genomic Signal Processing is a new area of resehethcombines

advanced digital signal processing methodologiesftnanced genetic data analysis.
It has many promising applications in bioinformatand next generation of healthcare
systems, in particular, in the field of microarrdsita clustering. In this paper we
present a comparative performance analysis of eddhmuligital spectral analysis
methods for robust clustering of gene expressiawsacmultiple microarray data
samples. Three digital signal processing methadsal predictive coding, wavelet
decomposition and fractal dimension are studiegrtvide a comparative evaluation
of the clustering performance of these methodsemeral microarray datasets. The
results of this study show that the fractal apphoacovides the best clustering
accuracy compared to other digital signal procgssaand well known statistical
methods.

Index Terms—Microarray clustering, Discrete wavelet, Lineargotive coding, Vector

guantisation, Fractal dimension, Genomic signat@ssing

1.Introduction:

In recent years, microarray data analysis has geavbetter insight on understanding and linkage
of genetic disorders in diseases such as diabetedjovascular diseases and some forms of
cancer[1]. This process relies mainly on robussteling, which aims at assigning observations
defined in a high dimensional feature space, eaegexpression levels, into subsets sharing similar
properties[2].

Genomic signal processing (GSP) is a new areasafareh that applies and develops advanced

digital signal processing methodologies for gendata processing and visualization [3]. In this



work, we are particularly interested in ‘GSP clusig, i.e. clustering methods based on Digital
Signal Processing (DSP) approaches applied to gergignals. In recent years several clustering
methods based on spectral analysis have been uceddor gene expression profiling [4, 5]. An
autoregressive technique was proposed in [4] tduat@ the potential regulatory relationship
between genes with dominant spectral componenter@iethods presented the decomposition of
expression profiles into spectral components toetate profiles was shown to allow obtaining
high accuracy expression values [6]. However, te-dao study has been reported on the
comparative evaluation of the clustering perforneané different methods designed for Digital
Signal Processing against standard microarrayesiast algorithms. In this paper we present such a
detailed comparative analysis and select the bexdonmance on different standard data sets. In
particular we present the performance of Lineardietwe Coding (LPC), Discrete Wavelet
Decomposition (DWD) and Fractal Dimension (FD), ammnpare the clustering performance of
these applied on number of microarray datasetsstahdard clustering methods.

The structure of this paper is as follows. Withie tontext of microarray data analysis, section
(2) reviews, first, conventional clustering methaaisd, secondly, techniques based on Digital
Signal Processing approaches. Section (3) preseatgeneral framework of GSP clustering. In
section (4) the details of clustering methods (LP®/D or FD) combined with vector quantisation
and cluster quality measures are introduced. Iticge¢5), the comparative results are presented.

Finally, the paper concludes with ongoing and feitwork in this area.

2.Related work
2.1- Microarray Clustering and Classification Methads

Although classification and clustering are diffaremachine learning tasks, that depend,
respectively, on supervised and unsupervised legmmiethods, both are relevant to the analysis of
microarray data. In recent years many of these odstthave been proposed to compare gene
expression levels in samples drawn, in generamftawo different conditions [7-26]. Table (1)
shows a comprehensive summary of existing micrgachastering and classification methods. A
brief description of these methods is presented fa@rcompleteness. Earlier techniques are based
on statistical, deterministic, probabilistic andrguitational methods producing either distance or
similarity measures to achieve dimensionality réiduc Earlier work of Golub et al. [7] used a

statistical method, i.e. T-test measure. The methedsured correlation that emphasizes the signal-



to-noise ratio by using a gene as a predictorréfédcts the difference between the classes relativ
to the standard deviation within the classes. Lamjaes indicate a strong correlation between the
gene expression and the class distinction. Thenadignethod used one way clustering only, either
for genes or samples, and was sensitive to the euoflgenes. Since two-way clustering methods
are more powerful when dealing with highly dimemsibdata, Alon developed such a method
based on a deterministic annealing algorithm [8jere a square-root barrier function was derived.
It approximates a solution of the max-bisectionbem allowing separation of a set of genes into
two groups which leads to the arrangement of aflegein a binary tree. In order to improve
standard annealing which relies on thresholds,hemdivo-way clustering method was proposed
using fuzzy C-means and entropy-based clusteripdperiments showed misclassification errors
depend on the number of iteration levels. Improgeduracy was achieved using a Biclustering
algorithm [10] to identify local structures from rge expression dataset based on Singular Value
Decomposition (SVD). The main limitation of all #eemethods is their dependence on the correct
choice of the threshold level parameter that islusehe clustering estimation.

Another line of research investigated the use @p®u Vector Machine (SVM) based clustering
to microarray data, where the construction of adifNensional hyper plane allows the separation
of data into two categories. The strength of SVMt isupports both regression and classification
tasks and can handle multiple continuous and categwariables. Furrey et al. [11] proposed an
implementation of SVM applied to microarray datastéring where a kernel is initiated, starting
with simple dot-product kernel, and then its diagjoiactor is tuned using top ranked features to
achieve the best performance. lizuka et al. [13toduced a Fisher's Linear Classifier to
microarray analysis. They showed that this staitimethod based on a linear combination that
maximizes the ratio of samples between the clasanaes and the within class variance performs
more accurately than SVM based systems. In ordémpsove these SVM schemes, a heuristic
method was introduced for non-parametric clustewhgre SVM classifiers define support vectors
describing portions of clusters and a model sedactriterion is used to join these portions [13].
Hybrid models were also proposed to enhance acgushcSVM based systems. SVM was
combined with a Genetic Algorithm (GA) to selecegictive genes [14]. An extension of that
scheme integrated a specialized Size-Oriented Confieature Crossover Operator in the GA to
keep useful informative blocks and produce offggsinvhich have the same distribution as their
parents [15]. Another hybrid model used metahdosstconsisting of a Particle Swarm

Optimization to refine the SVM based approach [15].



Table (1): Summary of existing microarray clustgrand classification studies

Techniques | Study Datasets Generation procedure Group
Golub, . T-statistics for gene selection
T-test 1999[7] Leukaemia Weighting voti r?g for classification
Two-way Alone, _ Colon Correla_tic_)n _for gene _selection_ _ o
19998 Deterministic annealing algorithm for clusing j=
Two-way Chandra, | Leukaemia, and | Preprocessing using entropy and correlation measure E
2006[9] Colon Clustering based on fuzfyrmeans i
. . Human Tissues, . . . .
Biclustering, | Yang, Lymphoma, and Preprocessing using statistics for gene selection
SVD 2009[10] Leukemic ' Clustering based on Singular Value Decomposition
lizuka, Classification using either Fisher Linear Classitie Support Vector|
FLC, SVM 2003[12] Hepatocellular Machine 9 PP
GA/SVM Huerta, Leukaemia, and Prepr_o_ces_sing u§ing Genetic Algorithm _
2006[14] | Colon Classification using Support Vector Machine o
i c
PSO/GA- Jourdan, E?g;;m'&’)lon Particle Swarm Optimization (PSO) and a GeneticAthm (GA) =
SVM 2007[15] Ovari ’ ' (both augmented with Support Vector Machines SVM) 3
varian,Prostate A
kNN Singh, : Prostate K-Nearest Neighbour clustering 8
2002[16 2
kNN gg(t)té[ﬂ Gliomas K-Nearest Neighbour clustering g
PLSLD Nguyen, Leukaemia, and Dim_en_sior] redu_ctio_n using Partial Least Squ_ares:tﬂaat_ion using
2002[23] | Colon Logistic Discrimination and quadratic discriminamalysis
Fort, Leukemia, Colon| Combining partial least squares (PLS) and Ridgal#ed logistic
PLSLD : )
2005[24 and Prostat regressior
SVM gg(r)%)fll éilrgfem'a’ and Classification using Support Vector Machine E £ .5
FIC Jong, Leukaemia, and | Preprocessing using support vector classifiers % 2 g
2003[13] | Colon Clustering using Find and Join Clusters method. 33 2
PAM Tibshirani Leukaemia Class prediction using Prediction Analysis of Manays - s 3 )
, 2002[19] statistical technique using nearest shrunken centro 7 é %
VARS, LGP, | Mukamala | 0 B | o Splines or Classiication & Regressimad or random | 45 © &
CARTRF | ,2005[22] | g P 9
olon forest
KPCA Liu, Leukaemia, and | Dimension reduction using Kernel Principal Compdnemalysis -
2005[20] | Colon Classification with logistic regression (discrimiiroen). o
Leukaemia, . . ] ‘8‘
P-ICR Huang, Colon, Glioma, Regula_lrlzmg gene expression data_ using Indeper@tmm:ponent <
2006[21] H analysis Classification using Penalized discrimimaathod )
epatocellular o
MRMR Ding, Leukaemia, and | Minimum redundancy - maximum relevance (MRMR) featu =
2004[25 | Color selectiol §
MRMR-GA Egégfaz%'] Ic‘:%lljgr?em'a’ and MRMR and Genetic algorithm
;’!;K' ZDSC?SO[%? Ic‘;leiléﬁ:;ma’ and finite mixture of Gaussians, followed closely kyneans, Probabilistic

Although SVM has been successfully applied, it reggumore training than the statistical and

linear discriminant analysis; moreover the clasatfbn of data in more than two classes is difficul

In order to address this, distance-based clusteneiinods such as K-Nearest Neighbour clustering

KNN [16, 17] have been used to select set of geqmession profiles. This simple approach

assigns each point in data space to its neareghbair which forms clusters if distances are

sufficiently small. However, this iterative procdasks robustness since it is very sensitive to the

chosen number of neighbours. To tackle this weakiaesl the nonlinearity of the data, Nearest
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Shrunken Centroid was successfully proposed foupgrvised gene clustering [19]. This method
relies on using denoised versions of the centragprototypes for each class. However, due to the
unstructured nature of gene data, their algorithay fall into Local minimums which produce
different partitions depending on initializationn& k-means tend to cluster data within spherical
regions of the Euclidean space, better clusteriag be achieved using a Finite mixture of
Gaussians (FMG-K), which is a curved summation afldtivariate Gaussian density functions or
Gaussian components [18]. In a mixture model, eachponent in the mixture is assumed to model
a group of samples. Based on density functionsghaduce mixing coefficients, one obtains the
probabilities of a sample belonging to each clus@enerally clustering approaches based on
distance measures are ineffective to estimate wvauidite functions in high dimensionality data.
This can be addressed using dimension reducti@enpasprocessing step within the cluster analysis
pipeline so that not only high-dimensional datadme manageable and computational cost is
reduced, but also this provides users with possitdeal examination of the data of interest.
However, dimensionality reduction methods ineviyatduse some loss of information which may
damage the interpretability of the results. Prifecigppmponent analysis (PCA) is one of the typical
approaches that construct a linear combinationssgtaf vectors that can best describe the variance
of data. Kernel Principle Component Analysis (KPCA)an extension of PCA performing a
nonlinear transformation using integral operatomkeé functions [20]. Both processes view the
profile vector as a point in this multi-dimensiosglce and use second-order statistical information
of the data. However, since much of the microam&yrmation may be contained in the high-order
relationships between samples, these second-orelgrods are not ideal. Independent Component
Analysis (ICA) has potential advantages over PCH [ overcome its limitations. ICA uses high-
order statistics, not just the covariance matrixP&3A does, which is more suitable for the
complexity of gene expression data. Moreover, it bandle a higher level of noise. The main
drawback is that ICA ignores some of the spatidl i@mporal structure contained in the data.

In [22], authors applied t-test to extract diffearelimensional genes, then applied Multivariate
Adaptive Regression Splines (MARS), Classificatimnd Regression Tress (CART), Random
Forests (RF) and Linear Genetic Programs (LGP) lassdy microarray data. MARS is a
nonparametric regression procedure that makes somgdion about the underlying functional
relationship between the dependent and independmmbles. Instead, MARS constructs this
relation from a set of coefficients and basis fiond that are entirely “driven” from the data. The
method is based on the “divide and conquer” stsatefpich partitions the input space into regions,

each with its own regression equation. This makédkB particularly suitable for problems with
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higher input dimensions. CART was built to prediontinuous dependent variables (regression)
and categorical predictor variables (classificgtid Random Forest is a classifier consisting of a
collection of tree structured classifiers with ipdadent identically distributed random vectors,
where each tree casts a unit vote for the mostlpoplass of input. Linear Genetic Programming is
a variant of the genetic programming technique thetis on linear genomes. Comparative
evaluation shows LGP achieved consistently bettsults than other methods. However, the
underlying problem of this iterative method is tliabecomes computationally expensive when
dealing with highly dimensional feature vectors.

Another analysis procedure combined dimension fgmlucising Partial Least Squares (PLS) and
classification using either Logistic Discriminati@dD) or Quadratic Discriminant Analysis (QDA)
based on the classical multivariate normal modekfch class [23]. Experiments show that LDA
yields better classification performances than QBAhough PLS proves more appropriate than
PCA for gene feature extraction, it has limitatioidrst, it is designed to handle continuous
responses while the variance of the error in thdetsodiffers across gene expression observations.
Secondly, this algorithm does not always convehg@rder to deal with this, the PLS method was
extended to binary response variables to be ablamalle the high-dimensional gene expression
space [24]. However, this limits its usage to tviass problems. Moreover, experiments show its
performance is very sensitive to the choice ohiien and regression parameters.

As a preliminary step in the clustering processtuees can be selected using the maximum
relevance/minimum redundancy (MRMR) algorithm, whis based on solid multivariate filter
procedures [25]. This method addresses data redamsaby selecting genes which have high
mutual information (maximum relevance) and simwtausly are mutually maximally independent
(minimum redundancy). This process can be furthgaroved with the help of genetic algorithm
combined with multi-class SVM. A new fitness fumctifor MRMR-GA with GA-SVM [26] was
proposed which always selects the smallest setmégthat provides maximum accuracy.

Most classification and clustering methods requargredefined gene sample similarity or
distance metric which has a major impact on theifggmance depending on how that metric
reflects the real relationship among samples. Gdlgerdata-dependent metrics are used; they
include Euclidean distance, Manhattan distanceRaatson-correlation. However, in practice, it is
desirable to use an adaptive scheme which canastitne best metric according to input data, i.e.
the local features of the gene sample data instiidy. In order to address this important challenge
new approaches based on digital signal processetgads have been recently proposed. The next

section will introduce such methods and examples.



2.2- Clustering Methods based on Digital Signal Piaessing methods

To overcome the clustering disadvantage of thedst@happroaches, several methods based on
DSP principles have been proposed for the clugiefrgenomics data in recent years. In general
these methods provide superior characteristics aosapto the traditional methods outlined earlier.
The gene expression samples can be seen as aigfila that involves some episodic waveform
transitions within time samples. Processing gengression as time series produces ranges of
frequencies that allow finding targets that areregped periodically with specific correlations
between both genes and samples. These charactegsi be analysed further in the frequency
domain using different methods designed for prangssligital signals to predict and identify
samples pattern using techniques such as autaaioreltrend analysis and autoregressive models.
In addition, highly dimensional data, which are anbination of observed and latent variables,
could be modelled for marginal inference under itilogical conditions in a probabilistic
system.

The functional nonlinear relations between genesehmotivated research in developing
nonlinear DSP based techniques for modelling g&peession data samples. The fundamental DSP
algorithms which were investigated for analysisnoitroarray clustering are linear predictive
coding, wavelets and fractal dimension. In all sasige main objective has been to represent a gene
expression signal with a set of predictive coedints which could be processed by spectral
clustering using measures such as spectral differand spectral distortion [2].

Method based on wavelet transform was introduceddintification of microarray features and
exploration of their relationship with phenotypigtcomes [27]. This approach allows decomposing
a gene signal into components of different lengtiles, providing a convenient basis for exploring
gene behaviour and their clustering according &ir thxpression signal. A hybrid analysis method
combining wavelet and GA was proposed to find digant genes [28]. Multilevel wavelet
decomposition was performed to reduce the dimeastgrof microarray features by breaking gene
profiles into approximation and detail coefficienégpproximation coefficients were reconstructed
to build the approximation, whereas the genetioraigm selected the optimal features from
approximation coefficients. Experiments, where ¥s@t 29 level of wavelet decomposition were
used, showed the method achieved more accuratksrésan statistical methods. A comparative
study of multidimensional dataset clustering methsidowed that, not only, the Wavelet method is
more computationally efficient and accurate thaatigical methods, i.e. classical K-means and

hierarchical clustering, but it is more sensitigaletect sudden changes in input data [29].



A systematic determination of cluster boundariesgishe ratio of within-class and between-
class variances was introduced in [30]. Moreoverpider to reduce the noise content in the
expression data, discrete wavelet transform withreshold value was used before the clustering
procedure. They tested three different types oherotvavelet functions, i.e. Daubechies, Haar and
Symlet, and showed that Daubechies wavelets arentst accurate. Moreover, they discovered
that data enhancement by wavelet transforms yieba¢igr results for time series data which have
periodicity. The multi-resolution property of waeeltransforms also inspired researchers to
consider algorithms that could identify clusterslidffierent scales [31]. This was applied recenly t
microarray data analysis where feature extractioms wbased on multilevel wavelet
decomposition[32].

Fractals analysis is an effective and relativelgerg scientific paradigm that has been used
successfully in many areas including biomedical biodogical sciences. In particular, it has been
recognised as a useful method in quantifying thaptexity of dynamical data and signals [33].
The fractal concepts of self-similarity and scalingariance have been applied to many biological
systems, from branching patterns of bronchial anclulatory vessels, to cardiac rhythms, to the
geometry of shells and trees [34]. Application®afelude genomics where multifractal spectrum
analysis was performed on DNA sequences [35].

The determination of fractal dimension (FD) canused for the characterisation of microarray
datasets to measure the similarity of gene exmessamples. It can be considered as a relative
measure of the number of basic building blocks fbah a gene sample pattern. Applications of
FD in biomedical and signal processing include types of approaches: (i) time domain where the
original signal is considered as geometric andpfidse space domain which estimates the FD in
state-space domain [36]. Clustering using FD iypee tof grid-based clustering, where the data
space is divided in cells by a grid. Some of thdl-w@own techniques that use grid-based
clustering are STING [37], WaveCluster [31] and fidrehical grid clustering [38]. Generally, the
effects of these techniques are influenced by itteeaf the predefined grid and the threshold of the
significant cells. Moreover, the technique canmdtsbaled to high dimensional datasets due to the
computational complexity in number of cells. Thiasvaddressed in [39] where they proposed a
technique of adaptive grids in subspace whose metation was based on data structure and
distribution.

From these studies, it can be noted that althoaghlral methods designed for processing digital
signals has been used successfully for microarestering, no comparative analysis and detailed
correlated study of their clustering performancthwiaditional statistical methods has been carried
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out to-date. Furthermore, these studies have a&en bvaluated using two performance metrics the
Davies-Bouldin and Silhouette width methods, wideled in clustering performance analysis
studies. In this work we will focus on DSP basettastion methods namely; LPC, DWD and FD

for microarray clustering using the same evaluati@trics.

3.GSP Clustering Method principle

The processing blocks of clustering methods base®$P methods applied to microarray data

are shown in Fig. (1). They are summarized in thlewing steps:

Microarray dataset

Pre-
processin
<_I

Selection of featur

. Estimation of
extraction method

coefficients

GSPClustering
algorithm:

Distortion measure al
Vector quantisation

Similarity grouping
Clustering Statistical cluster quality
measures

Figure 1 GSP analysis for microarray clustering

Cluster
validatior

Outcomes




1) Pre-processing. Since gene expression data are high dimensional canthin short
multivariate time series, the reduction of the disienality of the gene expression
variables is required. This can be achieved byeeittatistically selecting the most

expressed genes or specifying a number of gerteg iprofiles.

2) Clustering algorithms. This refers to the selection of relevant algorghito produce

informative clusters. For GSP clustering, the apphois divided into two stages:

i) Selection of feature extraction method: In thisnethod based on DSP approach is
selected to translate the signal into a representaklevant to the vector of
expression profile and to find the best predictogefficients for the microarray
model. This step also determines the proximity mesaselative to the similarity-
quantified measurement between two vectors of dedficients measure

i) Vector quantisation allows the clustering of thesuteant coefficients of the
transformed data model into the relevant classitjger$. This step determines the

distortion measure between vectors of coefficiemiguantise into the closest group.

3) Cluster validation. Since the clustering process requires no a priwintedge, its output
needs to be evaluated using specific criteria.isizal comparative approaches are used
in most applications to benchmark microarray daiatering methods.

4) Interpretation and Results. This final step transforms the cluster validatiorioi a

meaningful biological interpretation of the GSPstkring process.

4.GSP Clustering Method

In this section we detail the three DSP based ndsthoentioned earlier.

4.1- Linear predictive method

In this approach, we tailor the LPC method for m&ray data clustering. The gene expression
data contain rich information based on a set afigefnumber of expression sample values for a set
of genes can be represented &g (hered is the dimension of the gene expression array. In
considering these characteristics the followingegerpression data vector and their relationship

can be given by:
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Gax;: = {vn‘} (d=1.g) (1)

In the LPC method, a predictor is built to estinmtée expression variation component as a model
coefficient. This is performed by applying a speadalysis method on the microarray expression
data. This tailored approach, callediLPC, builds on LPC which is a well known and a
predominant method for estimating basic speechnpetexrs and which can extract the spectral
features of microarray data due to its ability todal multidimensional non linear data. LPC is a
method for signal source modelling through obs@éwadf input and output sample sequences. The
basic concept of LPC analysis is to estimate atfonal set of component coefficients which
describe the behaviour of a system where each ssipresample is approximated as a combination
of past samples [40]. A conceptual framework oftliePC method is illustrated in Fig. (2) where
inputs are represented by gene waveforgs,. LPC coding generates a series of coefficient
models that involves spectra of the original gearaes signal variation. The computation is based

on the principle that the estimated value of aipaldr gene expression data in microarray at

samplex, denoted a#,.,, can be predicted approximately by linear comimabf the pasip

gene expressions data defined as:

By = Li=1% Viga 2)

The prediction variation in expression valée ,, is the difference between the original data
expressions and the predicted as follows:
- T:::F:Ij, x} 3)

.-'1':.1:::5.:' = {I:v::_r,'j

The goal of the LPC analysis is to estimate thet Ipesdiction coefficientsa; over n gene
expression data samples and set the qud#rthe required predictor (usualh»>>p), so that the
predicted expression sample is a good approximatiothe original expression sample. This
optimization process used to calculate the prediobefficients is based on minimizing the mean
energy in the expression variation ouerexpression samples of the datasetlégst-squares
minimization method. This process leads to a systém equations witlp unknowns which are

solved to find the best fitting predictor coefficts.

There are a number of methods to solve those liagaations. The most common one is the
covariance method which is an efficient linear jgdn for spectral estimation techniques and is

appropriate when estimating coefficients from a @anof a non stationary signal. The covariance
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method windows the gene expression variatiaR,, instead of the individual gene expression

samplev . This prevents the introduction of distortion i@ spectral estimation procedure.

Sample Sample Sample
1 2 n
V(g' 1) a'(lx p)
Genel vy Via m Vin 2> | LPCModelvy >
S Gene
Gene 2 Vo1 V22 § Van Predictor
@, Vg, Model
% i LPC Modelvy L) > Coefficients
2
. >
=l
Expression profile %
Vig.n) &
LPC Modely, np)
—> " — 5
Geneg Vg1 Vg2 . . Vgn

Figure 2Conceptual framework of the miLPC method

However, direct quantisation of the coefficieatss not advisable because of their relatively large
dynamic range and possible filter instability perbt small changes due to quantisation error could
result in the internal digital filter pole becomingstable and producing large spectral errors. ;Thus
other superior parametric representations have toesmlated to replace the coefficie@g41]. In
this work we chose the Line Spectral Frequency ju8presentation to produce Gene Expression
Spectral Frequency (GESF) to capture the spectpakssion of information sequence. Since LSF
is independent of the characteristics of the sowfcéhe sequence, it has been shown to be a
particularly efficient for quantisation of informan [42]. Moreover, it does not distort the
spectrum, varies smoothly across the sequence fad @ better coding in relation to spectral
peaks. These GESF coefficients are used subseguentletermine distortion between samples.

Fig. (3) describes the processing steps of the @iakorithm.

The magnitude of the power spectrum depends osgheing of the GESF parameters. Closely
positioned parameters correspond to the peaks eofspgectrum, while widely positioned ones
correspond to the spectrum valleys. Since the pepectrum information is more important to the
gene expression samples, finer quantisation ofGBRSF parameters in these regions is desired.

This can be achieved by finer quantisation of dippesitioned parameters.
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Input: Predictor Coeff ordgs, Gene Expression dag
x: Size of Gene expression sampbesGene Number
Output: Codeword vector
Processing:
1-Compute the gene expression predictive coeffisi¢ap}
2-Compute Mean Square ErrtdSE
3-Translate coefficientss], } to Gene Expression Spectral Frequency
4-Drive codebook based on VQ method
5-Explore using the codebook the sample label ®tttimputing clustering of microarray
End

Figure 3 miLPC algorithm

4.2- DWD method

In general, wavelets tend to be irregular, asymmatrd are capable of revealing aspects of data
that other analysis techniques disregard. DWD nsethod allowing the decomposition of a signal
onto a set of basis functions and its analysisragsforming its input time domain into a time-
frequency domain. The main advantages of DWD aatitiprovides resolution optimality in both
time and frequency domains, and it does not requsttionary signal [43]. In this work we tailor
DWD for microarray gene expression data processiihg. method, callechiDWD, is based on
two major sub operations: scaling captures the geoie information at different frequencies by
successive low pass/ high pass filtering and doavnpding, whilst translation captures information
at different locations. The miDWD method decomposgpression data into several groups of
coefficients which contain information regardinge teampled signal at different scales. Coarse
scale coefficients represent gross and global festof the signal while fine scale coefficients
contain local details. The higher is the numbercofrelated coefficients between the localized
sections of two samples, the more similar the ssstiare. The wavelet detail coefficients at
different levels disclose the fully statistical anfnation contained in the gene expression vector’s
derivatives.

The goal of the miDWD method is to start from sealented decomposition, and then to
analyse the obtained signals on frequency subbddsislg these decomposition coefficients,
microarray data clustering can be achieved by nmeggsimilarities between datasets using the
vector quantisation method in order to obtain mediscrimination between features of microarray
samples and perform robust clustering.
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The conceptual framework of the miDWD algorithmsi®own in Fig. (4). The method starts by
applying recursively two convolution functions,.ia low and high pass filters on the given data
signalv(g,n. Each function produces an output stream thatlisthe length of the original input in a
specific resolution level. As a result, two setscoéfficients are calculated: tloé\(n) coefficients
are generated by the low pass filter anddbén) coefficients are produced by the high pass filter.
This representation provides information about oacray gene expression sample approximation
coefficients and detail coefficients at differerdates. Detail and approximation at leyekre
expressed respectively by Eq. (4) and Eq. (5) kswe:

Dja1(n) = T a;(8) g2n— t) (4)
Aip1(m) =%,a;(0) h(2n —1) (5)

whereh(2n-t) andg(2n-t) are the low-pass filters and high-pass filterse Thefficient vectors are
produced by down sampling and are only half theaidength of the coefficient vector at the

previous level. The processing steps of the miDWgorithm are shown in Fig. (5).

Approx. Coef.
Low pass h, cA(n)
) Filter |
Microarray

samples

A4

Vig.n)
—»

High pass O Detail Coef.
Filter ——» —__» ¢b(n)

Figure 4 Conceptual framework of the miDWD method

Input: Level of DWD decompositiotv, Gene Expression datg ,,
x: Size of Gene expression samplgsGene Number
Output: Codeword vector
Processing:
1-Compute the gene expression miDWD coefficient&\{v),cD(lv) }
2-Compute Mean Square ErrtdSE
3-Drive codebook based on VQ method
4-Explore using the codebook the sample label ®tctimputing clustering of microarray
End

Figure 5 miDWD processing algorithm
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4.3- Vector Quantisation for miLPC and miDWD methods
The two methods described earlier miLPC and miDW@guire Vector Quantisation (VQ) for their

clustering process as explained in section 3. I ¢lustering application, VQ has two main
advantages [44]. First, it allows capturing meahihglasses in the microarray gene expression
data samples, represented by the centres of themplss, and second, it makes subsequent
classification decisions more robust to the inherense of the gene data samples. The principle of
VQ is to mapP-dimensional input vectors=[Xs; ... ; % 17 by a finite set of. code vectors called
codebook Y = {y;; 1<i <L}. To design a codebook, tiedimensional space is partitioned into
cells{Cj; 1 <i <L}, then thequantisationprocess assigns one code-vegtdo eachx according to
which cell, G, they belong to: q(x)=y; if x € C. The average quantisation error between input
source and their reproduction codeword is called distortion of the vector quantiser. A major
aspect of the design of a vector quantiser codelmtk find the best trade-off between distortion
and rate. Once the number of quantisation levalgfimed, the rate is set. Then the focus is oa dat
quantisation as a means of removing noise from.dake centres of the groups of data

corresponding to different quantisation levels stidne selected so that distortion is minimized.

In this work, we use a ‘nearest neighbour’ vectoargiser in the microarray data space, i.e. a
vectorzis represented as a vector of gene expressionlesanvpich is mapped to a code veaigr
of expressions in microarray. Implementation ofteeguantisation in clustering microarray gene

expression samples is achieved as follows:

1- Selecting the expression vectpithat is nearest to a vectnras defined by
¢ = arg min ,(d(z,q;)) (6)

whered is a suitable distortion measure. The gain-nomedlilog spectral distortion is used
since it is widely accepted as a good quality mesastisignals [45]. It evaluates the similarity
of two auto-regressive envelopes of gene expresaamples and produces a microarray code
book.

The distancedf between consecutive GESF vectors can be calculatedrding to the

following expression:
ﬂf:\_LFl, LFk} = Z?:j_[“’rj {Eﬁ; — ikaJ]: with W= P(lfJ) (7)

whereLF; and LFy are vectors of GESF§j; is thej™ frequency ofLF; andw; is the power
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spectral distortion measure. Here, the gain-nomedliog spectral distortion is used since it is
a popular quality measure of coded speech spewdliah evaluates the similarity of two auto-

regressive envelopes. It is expressed in the fremudomain by the following equation:
d(z,4.) = [7(log B.(w) — log Pyy(w)) 2 ®)
whereP(w) is the auto-regressive envelope that is defined as

Plw) = ————— 9)

|1—EE:,_E;¢E‘J"'"|

2- Assigning the resultant microarray codeb@las cluster label to the data grouped.in

The design of codebooks is usually accomplishedrbyterative algorithm called the Lloyd
algorithm. This algorithm generates a set of regmtsive vectors of the source data and
optimizes the codebook using the distortion meamethod as shown in Fig. (6). Finally, once
the codebook has been defined, GESF coefficientoxea@re extracted and compared to all
codewords ofZ and mapped to a single codeword that represeatdiferent genes mapped on

the tested microarray data.

Goal: to partition unlabeled samples iktolusters
Xi {i=1,..P} Vq encoder ﬁ%iibwk Processing:
| G{=.b Q(X) 1- Set ti?é centroid ag at random foi=1,2,,...k
5 2- AssigN (z,q,,) = argmin (d(z,q,))
Y; {i=1,..L} 3- Setu; to mean of {g} |
Codebook Enzg- Repeat from step 2 until convergence
SizeL

Figure 6 VQ algorithm for the miLPC & miDWD methods

4.4- Fractals Dimension method (FD)

Since a microarray dataset can be representedcaitimns as attributes (features) and rows as
different data objects. Within this framework, #r@bedding dimensio of a microarray dataset is
the dimension of its address space which represkataumber of attributes of the dataset, whilst
the intrinsic dimensiorD is the dimension of the spatial object represerigdthe dataset,
regardless of the space where it is embedded. Byedding the dataset in &dimensional grid

whose cell sides are of sizethe frequency of data points falling into iffecell can be calculated:
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log(ZiCis)

loglr)

FD = (10)

wherer is the grid sizeC,, is the number of objects in th& cell under grid size. Eq. (10)
expresses the correlation fractal dimension whielasuares the probability that two points chosen at
random are within a certain distance of each otGeanges in the correlation dimension mean
changes in the distribution of points in the data3ée use of correlation FD as the intrinsic
dimension of a dataset allows identifying the datexl attributes and discarding those
uncorrelated. We call clustering microarray data D-dimensional space using fractal dimension
methodmiFD.

miFD is based on the box-counting and correlation &faditmension algorithms [45]. The basic
concept can be illustrated as a composition ofimedolution levels describing, for a given object,
structures having a self-similarity on varying ssalof magnification. The method starts by
partitioning the structure of the signal data spdiceension into pieces of equal size in a grid of
magnification factor size. Then, the number of pieces that contain inforamaf the original
signal is counted. The process is repeated bytiterpartitioning. FD can be calculated by taking
the limit of the quotient of the log of the changeobject size divided by the log of the change in

the measurement scale. Fig. (7) describes the ssimgpsteps of the miFD algorithm.

Input: Gene Expression datg « andr
X: Size of Gene expression samplgsGene Number;: magnification factor.
Output: FD value
Processing:
1- Select the genes expression sample data arebegpithem as a signal.

2- Estimate the range of signal space accordimstgiting, ending, minimum and
maximum values.

3- Perform regularization of the sample signal imbit squarestk, which form a
mesh grid of dimension

4- Count the number of grid squarezskNwhich intersect with the signal.

5- Plot log Nk vs —log and find the slope of the regression. liffee slope
represents the FD.

End

Figure 7 miFD processing algorithm
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5.Comparative performance analysis

In this section we present the details of the coatpa analysis of the GSP methods explained

earlier. We first describe the microarray dataaetsthe performance metrics used in this study.

5.1 Microarray datasets
In this paper, we used five well known microarrayasets. These datasets are used universally in

microarray data clustering research and considesdsenchmark datasets for such studies.
Table (2) shows a summary of each dataset ande& description of their particular associated
diseases. Each dataset has two subsets namelindrand test sets. However, since the GSP

methods do not depend on any form of training, wealmned both sets to produce a unique test

sets.

5.2- Performance metrics

The evaluation of spectral clustering depends on talidity indices based on statistical
measures, i.e. Davies-Bouldin (DB) and SilhouettietidV(SW). These have been widely used in
earlier clustering studies [46]. DB is based on rieximization of the distances between clusters
while minimizing the distances within a clusterelfs A DB-index is determined as a function of
the ratio of the sum of the distances within ateluto the distance between clusters: the smdiéer t

DB- index, the greater the quality of the achiecksbtering.

Table (2): Summary of the tested microarray dasaset

Training set Test set Total nq.
Type of No. of
Study di of Goal
isease enes )
9 Total | Classl Class2 Total Clasql Class2 samples
Golub, 11 27 14 20 47 ALL
Leukaemia 7129 38 34 72
1999 [7] AML ALL AML ALL 25 AML
Alone, 14 26 8 14 40 tumor
Colon cancer 2000 40 22 62
1999 [8] normal | tumor normal | tumor 22 normal
lizuka, Hepatocellular 12 21 8 19 20 sick
7129 33 27 60
2003 [12] carcinoma sick healthy sick healthy 40 healthy
Singh, Prostate 52 50 25 9 77 tumor
12600 102 34 136
2002 [16] cancer tumor | normal tumor | normal 59 normal
Nutt, 14 7 14 15 28 glio
Gliomas 12625 21 29 50
2003 [17] glio oligo glio oligo 22 oligo
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SW exploits inherent features of clusters to asHeswyalidity of results and select the optimal
partitioning of the data of interest. This methedased on cluster compactness (in terms of intra-
cluster variance) and density between clusterggiims of inter-cluster density): a good cluster
should display an intra density which is much highen its inter density. To determine SW, firstly
the SW of each sampl&\\) is calculated using Eg. (11). Then the averagef@Wach cluster is
computed. Finally, the overall average SW for athgples is calculated:

SW= sd(i) -Itsd(i)_ (11)

max{di),sdi)}

wheresc(i) is the average distance between the samglether samples in the same clusselj)

is the average distance between the sairgoiel other samples which belong to the nearesteclus

The average of Silhouette score 8 classC across all genes reflects the overall qualityhef t
clustering result as expressed by Eq. 12:
1 n
ASW() =~ 2SW (12)
i=1
To measure the global goodness of clustering usiegSilhouette index, two parameters are
required to be calculated. They are the Silhouatigth range, which is between 1 and -1, and the
Average Silhouette Width (ASW). If the value of tAeerage Silhouette Width is greater than 0.5
it indicates that clusters achieved a reasonabtitipa of the data. However, if its value is lower

than 0.2, it expresses that the data do not extlister structure.

5.3 Results analysis and Discussion

In order to validate the GSP methods describedegad MATLAB® simulation model was
implemented. In all GSP methods, we followed theesalesigned signal processing procedures.
First, after pooling together the training and testnples to generate the unique test set for each
dataset, we applied the most common gene selempiproach called gene ranking [7] to microarray
data to select an appropriate number of genes.ivadate analysis approach was used to evaluate
each gene individually with respect to a criterithvat represents class discrimination ability.
Procedures of gene selection are based on compartkdalue of each gene according to its signal-
to-noise ratio. These selected expression datatiwereprocessed to predict microarray coefficients
using either the miLPC, miDWD or miFD method. miLR@d miDWD based clustering were

performed by vector quantisation method using taesvords which corresponds to the number of
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classes in all the tested datasets. For miFD, eringt was carried out by the estimation of fractal

dimension for each sample and then by finding elusased correlation between these dimensions.

We first provide a more detailed analysis of thee¢hGSP methods for Leukaemia. Then, we
present general performances obtained on all 5sefgtaSince each set was captured in very
different contexts associated to specific medicalditions, they vary in terms of gene and sample
sizes. Therefore, for each set, each GSP methodohadtomatically evaluate the parameters to

achieve best performance in the clustering prodédaes of these parameters are shown in table 3.

miLPC algorithm iteratively calculates the LPC argewhich is the main influencing parameter,
by minimising the Mean Square Error (MSE) betwelea original gene sample signal and the
prediction signal. Fig. (8) shows the impact of thember of genes for a variety of orders on the
between a signal and its prediction. Experimentdlyas found that a minimum MSE of 0.838
provides accurate clustering analysis of the testkaemia dataset for g={75,125} genes using an
order p={34,35}. Higher order selection would lead to arcreased complexity of the analysis

without providing better accuracy.

LPC order g

- 3 ()
31
32

——1

—_— =34

a5

50 75 100 125 150 175 200
Number of genes

Figure 8 miLPC analysis for different ord@) @nd selected genes of the Leukaemia dataset

Fig. (9a) shows/oronoi clustering ofthe Leukaemia sample set using the miLPC methold wit
p=34 andg=75: samples are plotted according to their digtordistances to the two classes.
Fig.(9b) presents their associated silhouettesefigad! in the previous section. Since the global
silhouette index, ASW, is equal to 0.49, the fornokasters are likely to partition accurately the
samples in the dataset. On a sample basis, sileowsdth values are generally positive which
suggests accurate clustering. However, Fig. (9bjvslone exception (sample 21) which displays a

negative value and leads to conclude that its gngups unreliable. Consequently, this sample

20



should not be associated with any of the clust&csually, class labels provided with the dataset
reveals that all samples were clustered accurdtglpniLPC, even the one which was judged as
unreliable.
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Figure 9 Voronoi clustering associated with silntesof Leukaemia dataset obtained by miLPC

Experimental results concerning miDWD method fe leukaemia dataset are of better quality
since a very good predictive MSE of 0.95 can beaiokt using g={100,125,150} genes when
processed with a DWD filter of level 2. This leadsan ASW of 0.63 and the absence of any
unreliable sample. Even better results are obtairséng the miFD method. Since fractal property
allows localised description of expression datageeellent ASW of 0.91 is achieved using g=100

genes. The performance of these GSP methods divéhgatasets is summarized in Table 3.

Table (3) comparative Performance of the GSP msthod

miL PC approach miDWD approach miFD approach
Samples . Min _— Samples . Min _ Samples . Min
Clustering LPC | Predictive Clustering DWD | Predictive Clustering
Datasets non no. of non no. of non no. of | FD
Clustered | &€curacy genes order| error Clustered | &€ouracy genes level BTOr |~ ctered | ECCUTECY genes
Leukemi
e”[;m'a 0 100% | 75 | 34| 0838 | O 100% |[1200| 2 | 0956 | 0 100% | 100 |0.87
Colon
(8] 3 95% 100 | 32 297 2 97% 25 3 3.7 1 98% 75 |0.55
Hepato-
cellular 14 76% 125 | 29 | 0.528 7 90% 50 8 4.2 5 92% 100 | 0.2
[12]
Prﬁs(;]ate 14 | 9% |125| 28| 092 8 9% |175| 6 | 342 9 93% | 100 |0.92
G'[';’;‘]“as 5 0% | 75 | 26| 147 | 4 92% | 50| 9 | 13 3 9% | 100 |0.56
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These comparative results indicate that miFD coesily achieves significantly better results
than the other GSP methods and miLPC is the leastrate method. Although miFD provide better
performance than miDWD, miDWD requires fewer getoegroduce accurate clustering.

Fig. (10) presents the validation indices of thdP@%ethods. The figure shows that DWD and FD
have generally average silhouette widths whichegtteer close or greater than 0.5 which indicates
they produce reasonable partitions of the data Emmporeover, FD’s values are systematically
higher than DWD’s. On the other hands, LPC clustegenerates low ASWs and even in one
instance, where the width is smaller than 0.2sihot able to produce structured clusters. This
figure also provides DB-indices which are in lingish ASWSs. This analysis of validation indices
confirms the earlier conclusion based on perforraatustering based on the miFD method is

consistently the best GSP approach.

25 4 - 1.5
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8 ODwWD
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FD .
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Figure 10 Validation of the GSP methods with DB ASW

Table 4 shows the complete analysis of the GSP odstltompared with earlier clustering
methods described in section 2.1. These result®astinate the superior clustering performance of
the miFD method over all other methods. Since qdytial results are available regarding the
GA/SVM method, the fact it outperforms miFD for tBelon dataset is not fully conclusive. In any
case, compared to our approach, GA/SVM has liromsti First, since it is based on GA
optimisation, GA/SVM is very computationally expems Secondly, unlike the miFD method, it

requires a training dataset, which may not be alklin some applications.
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Table (4): Complete Comparative analysis and coatpar of GSP and traditional clustering methods

using different microarray dataset.

Method Author Leukaemia Colon Hepatocellular Presta Gliomas

T-test Golub,1999[7] 85%

T-test Alone,1999[8] 87%

FLC lizuka, 2003[12] 93%

kNN Singh,2002 [16] 90%

kNN Nutt,2003 [17] 86%

PAM Tibhirani,2002[19] 95% 83% 59% 67%
MARS | Mukkamala,2005 [22 85% 809 92%

CART | Mukkamala,2005 [22 92% 959 96%

LGP Mukkamala,2005 [22 95% 859 96%

RF Mukkamala,2005 [22 100% 90% 88%

PLSLD Nguyen,2002[23] 97% 929

KPCA Liu,2005[20] 97% 100%
FJC Jong,2003[13] 91% 54%
Two-way Chandra,2006[9] 96% 88%

SVM Furey,2000[11] 94% 90%
MRMR Ding,2004[25] 100% 94%
GA/SVM Huerta,2006[14] 100% 99%

P-ICR Huang, 2006[21] 95% 869 62% 74%
miLPC 100% 95% 76% 90% 90%
miDWD 100% 97% 90% 94% 92%

miFD 100% 98% 92% 93% 94%
6.Conclusion

In this paper, we introduced a detailed comparaginalysis of GSP methods for microarray
clustering. The performance analysis of these nasthon different well known test bench
microarray datasets indicates that the miFD methatgerform all the other GSP and traditional
methods without the need for either training dataee vector quantisation analysis. The quality of
the results obtained from our miFD approach sugg#sit this method is able to partition the
samples of the signal data space by extractingalewant features. This can be explained by the
fact that the miFD cluster method depends on isicinelationship in the sample cluster set, rather
than geometric shape or distances. Furthermoreyidg® enhanced characterization property
indicated by the interaction between the smallastitipons with the distribution of the samples to a

degree that cannot be matched by traditional statisneasurements.

Also, our study indicates that the proposed metloaats be applied in future GSP microarray
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clustering studies for different diagnostic andspealised healthcare systems. Ongoing work is
currently underway to integrate adaptive schemés tine presented methods to provide better

processing capabilities for testing larger datagbfferent diseases and genetic samples with@ut th

need of the relevant parametric selection procedurerther work on non-stationary data samples
using adaptive DSP methods is currently on goirlgg GSP methods present a suitable approach
for real-time processing of different gene expmssiata sets that might be required in future

studies in areas such as mobile healthcare orithdilised medicine. Further work will focus on

the application of the presented methods to geleetge instead of sample selection.
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