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Abstract 

In this paper, we propose an integrated particle filter-based pose tracking 
framework which combines priors able to model human motions keeping stylistic 
variations, reducing the probability of divergence and facilitating the recovering after 
failure. A novel unsupervised dimensionality reduction technique, Generalised 
Laplacian Eigenmaps (GLE), generates compact and coherent continuous spaces 
which explicitly express style. The proposed particle filter embeds the GLE manifold 
to take advantage of its geometry into the propagation and hypothesis generation 
stage. The method is validated using standard HumanEva 2 dataset. 

1 Introduction 
Articulated human tracking is one of the most active areas in computer vision due to its 

numerous applications such as video surveillance, gesture analysis, human computer 
interfaces and computer animation. However, it still remains as a major challenge due to 
the high complexity and dimensionality of the human pose space, which have a clearly 
negative impact on existing trackers, reducing their reliability at reconstructing human-like 
poses and making impossible recovering from failure.   

Such difficulties have led to the development of approaches that address the size of the 
solution space, either using efficient search strategies such as annealing [1] and space 
partition [2] or by reducing its dimensionality [20-26]. Since the computational cost of 
search strategies increases with space dimensionality, many dimensionality reduction 
methods (DR) have been developed and explored as prior models for articulated human 
tracking. They are particularly relevant when dealing with the human pose space which, 
although it appears high-dimensional in its traditional individual angular parameterisation, 
has in fact a significantly smaller intrinsic dimensionality [3,4,5]. However, these 
processes may result in a loss of generality by compressing important information such as 
style, intra-activity variance and inter-subject variability. 

In this paper we propose to address those natural limitations of model priors for 
articulated motion tracking. By employing a novel DR methodology able to preserve not 
only temporal information but also the stylistic variation among people, Generalised 
Laplacian Eigenmaps (GLE), we offer a tracking framework robust and sufficiently 
general so that it can be applied to different scenarios and actors. In addition, we suggest a 
novel and integrated tracking scheme, completely coherent with the prior formation 
process, which outperforms traditional methodologies only based of stochastic searching 
schemes in a lower dimensional space. As a result, this new scheme improves search 
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efficiency, reduces risks of divergence and increases the probability of recovering after 
failure. 

1.1 Related work 
A low dimensional representation not only has to provide a compact and analytically 

tractable space suitable for search, but also must be sufficiently general to capture human 
pose variations. Since linear methodologies are not able to cope simultaneously with both 
requirements, this led to the development of many non linear models, such as mapping-
based (Gaussian process latent variable model GPLVM [6]) and embedded-based 
approaches (Laplacian Eigenmaps LE [7], Isomap [8] and Local Linear Embedding [9]). 

The exploitation of non-linear DR techniques for tracking in a lower-dimensional space 
requires locality in the low dimensional space, i.e. nearby regions in high dimensional 
space must be mapped to nearby regions in low dimensional space. If this property is not 
available, artificially high values of the noise model and complex non-linear dynamic 
models are required to deal with the absence of continuity inside the space. Several 
techniques, such as STIsomap [10], back constraint GPLVM (BC-GPLVM) [11], Gaussian 
process dynamical model (GPDM) [5] and Temporal Laplacian Eigenmaps (TLE) [4], 
have attempted to address this issue by introducing a temporal constrain to ensure smooth 
transition in the latent space. Although they succeeded in improving tracking performance 
for a given activity, they failed to represent stylistic variations, such as different people 
performing the same activity or the same person performing different variations of an 
activity. Although a few approaches have been suggested to deal with stylistic variations 
[12,13,14,15], none of them has been fully validated within a pose tracking framework. 

Regarding the usage of prior models specifically for human articulated tracking, many 
different approaches have been proposed in the past [16,17,18,19,20]. However, the 
inclusion of manifolds produced by DR techniques has now become the most popular. 
Howe et al. [21] proposed Gaussian mixture representations of short human motion 
fragments in the high dimensional space integrated into a Bayesian MAP framework. 
Brand [22] and Sidenbladh et al. [23] also modelled the human pose manifold with a 
Gaussian mixture in combination with an HMM to infer the mixture component index. 
However, all these approaches model the priors by using linear and Gaussian methods, 
which are not adequate to describe the complexity of the human motion space. More 
recently, Sminchisescu and Jepson [24] proposed to associate the embedding space 
produced with a non-linear spectral method with a low-dimensional probabilistic model 
based on a simply parametric latent density (Gaussian mixture). Urtasun et al. [25] used a 
dynamic MAP estimation framework based on a more advanced prior learning 
methodology, i.e. GPLVM, and subsequently [26] extended their framework using GPDM 
to learn a latent space with associated dynamics. Li et al. [27] proposed a similar approach 
based on a different DR technique, LLC, where its coordinated mixture of factor analyzers 
are integrated within a particle filtering framework. However, the absence of dynamics 
makes it less accurate than GPDM. Finally, Taylor et al. [28] also learnt a binary latent 
space with dynamics (using an energy-based model) but applied it to motion synthesis, 
instead of tracking.  

As a common characteristic, all these previous methods exploits the multi-hypothesis 
capabilities of particle filter to perform an efficient search in low dimensional spaces, 
where hypotheses are distributed in the low-dimensional space according to a generally 
unknown low-order dynamic model associated to a Gaussian noise. However, such 
approach does not prevent divergence when the noise is not constrain by manifold 
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geometry since hypotheses can move freely in the whole space instead of being 
constrained to remain in the vicinity of training points. 

2 Methodology 
In this section, we introduce our probabilistic tracking framework based on particle filter 
that integrates motion priors for robust and multi-style pose estimation. The priors are 
learned by applying GLE whose capacity to produce general manifolds allows preserving 
both temporal continuity and stylistic variations. The embedding of the prior is consistent 
with the nature of the GLE spectral method since it relies on graph information derived 
during training. This prior embedding supports a specialised particle filter in two ways. 
First it provides a propagation model with both temporal (dynamic model) and stylistic 
constraints. Secondly it provides automatically a suitable process noise model in the 
manifold created from training data. This prevents divergence towards invalid poses in the 
low dimensional space by ensuring moving in the vicinity of the manifold. 

2.1 Prior model learning: G eneralised Laplacian E igenmaps (G L E) 
Given a set of data points, Y = {yk} k [1,M], distributed in a high dimensional space (yk 

  N), LE is able to discover its low dimensional representation, Z= {mk} with (mk   n), 
where n< <N, which preserves the local structure of the original data by ensuring: 

 (1) 
where L is the Laplacian matrix and D is the corresponding diagonal matrix with entries 

. G is a graph whose connectivity controls directly the similarity in the 
embedded space [7]. 

Since the LE framework only aims at preserving the local structure of each data point, in 
the case of time series, the produced embedded space may conserve neither the original 
temporal structure nor the style variance present in the training data. To address this, we 
proposed to express both the temporal structure and the style variance of the original data, 
by building neighbourhood graphs between the training samples. In this manner, local style 
neighbours as well as local temporal neighbours are placed nearby in the LE embedded 
space without the need of enforcing any artificial embedded geometry as in [12].  

Similarly to [4], two types of neighbourhoods are automatically defined in GLE for each 
data point mk: 
- Temporal neighbourhood Tk: it ensures temporal continuity on the manifold. The 2t 

closest points: 
Tk  { mk-t mk mk + t } (2) 

 are defined as the t-previous and the t-next points in the time series.  
- Stylistic neighbourhood Sk: based on local geometry, it ensures stylistic continuity 

between training instances which are close in style. First, a temporal neighbourhood is 
defined around the point mk. Then, Dynamic Time Warping (DTW) [29] is applied over 
a sliding window through the entire training set to detect and temporally align rk 
repetitions of the temporal neighbourhood, Rk

h h [1,rk]. Finally, stylistic neighbours 
Rk

h(l) l [1,rk] are selected as the closest points to mk inside each repetition Rk
h. 

Sk  {Rk
1 mk Rk

rk(rk)} (3) 
 

Both neighbourhoods may be understood as constraints (Eq. 6) and modelled as graphs 
(Eq. 4 and 5). 
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(4) 

 
(5) 

 (6) 
A manifold which includes temporal-stylistic coherence in its structure is generated by 

introducing these constraints with an appropriate balance . The embedded space Z is 
spanned by the eigenvectors given by the n smallest nonzero eigenvalues  where n is the 
number of resulting dimensions. They are obtained from the solution of the generalised 
eigenvalue problem [7], which is deduced by minimising the objective function: 

 (7) 
subject to  where I is the identity matrix. 

Under this formulation, LE, could be seen as a special case of GLE where  = . A 
visual comparison between different LE-based methods and the influence of the temporal 
and stylistic is depicted in Figure 1. The internal structures of the GLE manifold and the 
connectivity given by the temporal and stylistic neighbours is shown in Figure 2. 

 
Figure 1: Manifolds created with Mocap data from 3 sequences (red, green and blue) and with 3 
variations of an activity per sequence (walking, fast walking and running). Left: LE. Middle: 
Temporal LE. Right: GLE. 

Since spectral methodologies such as LE do not provide explicitly any mapping 
mechanism between the low and high dimensional spaces, Radial Basis Function Networks 
(RBFN) are used to tackle this issue because they proved their effectiveness [4,13,30]. 
Direct  and inverse functions between high and low dimensional spaces are trained to 
provide projection functions. 
  (8)  

2.2 G raph-based propagation and prediction for particle filter 
Once the manifold has been created and a point on its surface has been selected as the 

initial pose, particles must be distributed and propagated. Traditionally, this is achieved by 
applying a low-order dynamic model and a Gaussian noise around that prediction [25,31]. 
In such scheme, tracking performance relies directly on the characterisation of the noise 
function. Since there is no hard constraint associated to the manifold, the estimated 
distribution of particles could diverge outside the training space and produce unrealistic 
hypotheses.  

We propose to tune the process noise on information provided by the GLE prior model.  
Specifically, a customised noise estimate is obtained for each point of the continuous low 
dimensional space by considering the RBFN functions as a Gaussian Mixture Model 
(GMM). 
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Figure 2: GLE manifold created with Mocap data from 3 sequences (cyan, green and blue) and with 
3 variations of an activity per sequence (walking, fast walking and running). The learned temporal 
(black) and stylistic connectivity (red) given by the graphs  and respectively, for a subset of 
randomly selected points.  

First we propose the usage of multi-dimensional Gaussian activation functions (Eq. 
8) in the RBFN. 

  (9) 
for j =1, ... ,ng, where X is the input feature vector and ng the number of Gaussians to be 
used. These particular functions are more suitable than traditional spherical functions for 
modelling and mapping the manifold given the intrinsic multidimensionality of a multi-
style space. They will not only lower reconstruction error when projecting our hypotheses 
from the latent space to the 3D skeleton space, but also provide accurate modelling of the 
area around the manifold to produce valid hypotheses according to the training set. The 
noise covariance can be modelled, at any point in the low dimensional space x, as the 
covariance of a subset Nsg of the Gaussian set Ng belonging to the GMM which 
correspond to that point according to the Mahalanobis distance and a certain thresh  

 
(10) 

 Although, this equation could provide a satisfactory noise level (as we will see in the 
result section) that is coherent with the manifold and mapping function, it does not ensure 
that the system will not diverge when only poor observations are extracted from a few 
consecutive frames. This is addressed by integrating a combined searching and dynamical 
model into the manifold. This will be achieved by using the constraints used during the 
creation of the embedded space for particle propagation. In this manner, we propose an 
integrated methodology coherent with the manifold.  
 In LE-based methodologies, including GLE, connectivity graphs regulate the proximity 
and locality of the poses on the manifold. Therefore, this connectivity information is very 
valuable to propagate and predict plausible hypotheses. This is achieved by replacing the 
traditional deterministic propagation and prediction steps of particle filters by a stochastic 
propagation based on a triple resampling process. 

Thus, firstly, particles are resampled to propagate valid hypotheses in the standard way 
according to their observation weight in the previous time step (Alg.1, 1a-1c). 

The second resampling stage projects particles in time based on temporal graph . It 
will associate each particle  to training points in the manifold  with a probability 
proportional to their Euclidean distance. 

 (11) 
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 Only one manifold point is randomly selected for each particle. Its corresponding 
temporal neighbour  is then used as temporal prediction (Alg.1, 1d-1h). 
 The third resampling stage projects particles in the style dimension based on the 
stylistic graph . Again, the resampling is repeated for each particle and only one sample 
per particle is selected. All the stylistic neighbours associated to the temporal prediction 
of the resulting particle from the previous resampling are taken into account. Their 
probability is given by their values into the stylistic graph  (Alg.1, 1i-1l). Finally, 
Gaussian noise , as estimated by Eq.10, is added to the final 
set of particles in order to allow some degree of flexibility around the training manifold 
(Alg.1, 2).  
Algorithm 1: Particle filter with GLE priors and graph-based propagation 
Given a set of particles  which represents the posterior probability of 

 at time t-1, and a prior manifold  
1. Select N samples from the set  with probability : 

a. Calculate the normalised cumulative probability  

b. Generate a uniformly distributed random number  and find the smallest j 
for which  

c. Set  
d. Generate M samples  associated to manifold points  with a probability 

 where  is a normalisation factor 

e. Calculate the normalised cumulative probability  

f. Generate a uniformly distributed random number  and find the smallest j 
for which  

g. Set  
h. Propagate  to the next time step  according to the next temporal 

neighbour in the manifold given by  

i. Generate  samples  associated to the manifold points  with a 
probability  

j. Calculate the normalised cumulative probability  

k. Generate a uniformly distributed random number  and find the smallest j 
for which  

l. Set  
2. Noise addition  where  

3. Likelihood function evaluation  over the input image  

4. Estimate the mean state of the set  in the high dimensional space, 
=  

  Thank to this triple resampling strategy, see Alg. 1, we provide a stochastic 
propagation and prediction scheme, coherent with the probabilistic PF framework, which 
allows moving on the manifold surface. Conceptually, given a previous position of a 
particle , the prediction  is: 

 (12) 
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This methodology reduces the probability of diverging, increases the robustness and 
possibility of recovering after failure and facilitates the prediction in time and style by 
using the manifold information recorded in the connectivity graphs and its mapping 
functions. 
 Although the complexity of the algorithm increases due to this probabilistic procedure, 
the added computation time to the whole framework is almost negligible. This is due to the 
fact that the most expensive part of the algorithm is the evaluation of the likelihood 
function, and the number of hypotheses H to evaluate does not increase with the 
probabilistic procedure. The complexity introduced for the second resampling is O(H*P) 
where H is the number of particles and P is the number of training points. In the third 
resampling, the maximum theoretical complexity would be O(H*P) if the graph was fully 
connected. However, in practice, the percentage of connectivity c is around 1%, which 
leads to a complexity O(c*H*P).  

3 Exper imental Results 
The proposed algorithm is validated using a standard and well-known framework for 
articulated human pose estimation and tracking, HumanEVA [32]. This is achieved by 
integrating our priors as well as the propagation strategy into the APF [1] baseline 
algorithm provided by the dataset authors. The HumanEva evaluation framework has been 
chosen due to its acceptance among the scientific community, the numerical validation 
provided by the system without access to the grountruth and the availability of multi-style 
sequences (walking-running-balancing can be considered as different styles of bipedal 
locomotive activity). This point is especially relevant for us given our goal of validating a 
tracking system able to cope with inter-person intra-activity variability. 
 In order to demonstrate the generality of the framework and how it is able to infer 
effectively the intrinsic human pose from a training set to apply it in a different scenario, 
we train the priors with a completely different set of sequences. With this purpose, we use 
our new MoCap data It was recorded using an optical 

(2 
miles/hour), fast walking (4 miles/hour) and running (6 miles/hour), as well as transitions 
between these three locomotion modes. The actions are performed on a treadmill to allow 
speed control. In our experiments 3 subjects produced 3 sequences of 4800-9000 frames 
each. 3D skeleton data are represented by quaternions of 13 joint angles. 
 The state vector  containing the parameters to be estimated by the particle filter is 
defined as , where x, y and z are the 3D coordinates of the 
base of the spinal cord,  and   are   the  global  rotation  angles  of   the  body  regarding  a  
fix   3D   reference   and     are   the   coordinated   of   the   3D   human   configuration   in  
the  low  dimensional  space.  As  setup  parameters  1500  particles  were  used  in  all  the  
experiments  for  the  version  based  on  PF,  and  100  particles   in  5   layers   for  APF.  The  
four  synchronised  cameras  that  composed  the  video  dataset  were  employed.    
   A   comparative   analysis   is   conducted   to   contrast  GLE  Graph-­‐based  Particle   filter  
with   other   methodologies   from   the   state   of   the   art,   such   as   conventional   particle  
filter,   annealed   particle   filter,   or   particle   filter   using   GPLVM   as   a   prior.   Sequence  
S4_Combo_1     the  most  complex  sequence  of  the  dataset  -­‐  was  used  as  test  sequence  
in  order   to  demonstrate   the  contribution  of  graph-­‐based  propagation  when  using  a  
zero  order  dynamic  model  and  the  noise  estimation  given  by  Eq.  10.  
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Error [cm] S4 _Combo_1 

E+S PF 14.1 (6.5) 

E+S APF 14.5 (9) 

E+S GPLVM-PF 17.58 (10.1) 

E+S GLE-PF 13.7 (9.5) 

E+S GLE-GbPF 12.2 (7.5) 

BS PF* 11.9 (8.1) 13.8 (9.1)*- 

BS GLE-GbPF* 11.4 (7.8) 12.6 (6.4)* 

Figure 3: Left. Performance comparison on HumanEVA II. Standard deviation is given between 
brackets. Results are given for frames [1-437] (before divergence of all the methods) in the E+S and 
BS experiments and for [1-830] (walking and running) in the BS experiments (indicated with an *). 
Right. Results on the manifold for Graph-based Particle Filter for S4_Combo_1 (HumanEva II) 
sequence using bi-directional silhouettes. Dark blue corresponds to walking (frames 1-370), green  to 
running (371-830) and cyan to balancing (frames 831-1257). 

 We can observe in the table in Figure 3 left the improvement in accuracy achieved by 
using priors in conjunction with particle filter. However, this effect is small or even 
detrimental and does not represents a competitive advantage, especially when this prior is 
not able to represent properly the stylistic variations of the test subject (see GPLVM-PF). 
The inclusion of the graph-based propagation model shows a much clearer improvement 
which, in combination with the capacity of GLE for representing stylistic variations, is able 
to cope with the running phase, the walking phase and their transitions. 
 This comparative study was made by using the default observation based on edges plus 
silhouettes (E+S) as likelihood function. For this observation, results reported in the state 
of the art [32] shows an average error of 14cm, which matches with the results we obtained 
with a conventional particle filter. However, they are outperformed by our new method 
which 14% (or 2cm) more accurate. As reported in [32]  is unable to track the 
subject over the full length of the sequence. In this experiment, trackers diverge after the 
frame 437 for all tested methodology. On the other hand [32]demonstrated that the 
bidirectional silhouettes (BS) was suitable for this task and able to cope with fast running 
motions. Using this observation, our method not only processes the whole sequence, but 
also remains superior to particle filter. The quality of the new observation is highlighted by 
the fact that on the first 437 frames, it is in average 1cm more accurate than E+S when 
using our method. 
 

 
Figure 4: Numerical results for Graph-based Particle Filter for S4_Combo_1 (HumanEva II) 
sequence using Edges+Silhouettes (green) and bi-directional silhouettes (blue) as observation.  

 Figure 4 shows the error per frame using our methodology (GLE-GbPF) using both 
observation schemes. It shows that graph-based propagation provides added robustness 
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preventing divergence from the manifold (except when observation is very poor), which 
allows recovering from large errors due to poor estimations of the global position and 
rotation (predicted by simply adding Gaussian noise to their previous values) in frames 
200, 514 and 732. Figure 5 shows the volumetric representation of the final estimation for 
few frames seen by camera 1. Finally, Figure 3 right shows the estimation provided by 
particle filter within our framework on the low dimensional space. A colour code has been 
used to classify the activity performed by the subject. Thus, in dark blue, we can see the 
poses theoretically corresponding to walking and how they are placed on the area of the 
manifold corresponding to walking poses base of the cone in most of the cases. Similarly, 
the running poses in green are also situated in the area corresponding to running in the 
training set (top of the cone). The balancing poses, although estimated wrongly due to their 
absence in the training set, they are also placed on the surface of the cone. 

 
Figure 5: Results for graph-based Particle Filter for S4_Combo_1 (HumanEva II) sequence using bi-
directional silhouettes as observation. Frames: 1 to 900, every 50. 

4 Conclusions 
In this paper, we introduce a novel tracking framework based on particle filter which 
integrates priors based on a dimensionality reduction and a graph-based propagation 
scheme. Our system is able to successfully track different stylistic variations thank to the 
usage of a new DR technique, GLE, for modelling the space of activity. These GLE-based 
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priors are capable of representing not only variations in the execution of a family of 
activities (walking, running) but also those due to the individual particularities among 
subjects. This allows tracking of new subjects, scenarios and environmental 
conditions which are present in different datasets. In addition, the graph-based particle 
filter ensures a coherent propagation and prediction of particles which follow the training 
data by moving on the manifold surface, avoiding divergence, increasing the robustness 
and the probability of recovering after failure and facilitating the prediction in time and 
style. As future work, we plan to extend the methodology for activities of different nature 
in order to cope with complex scenarios of activities.  
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