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Abstract—In this paper, a novel framework for visual tracking
of human body parts is introduced. The presented approach
demonstrates the feasibility of recovering human poses with data
from a single uncalibrated camera using a limb tracking system
based on a 2D articulated model and a double tracking strategy.
Its key contribution is that the 2D model is only constrained by
biomechanical knowledge about human bipedal motion, instead
of relying on constraints linked to a specific activity or camera
view. These characteristics make our approach suitable for real
visual surveillance applications. Experiments on a set of indoor
and outdoor sequences demonstrate the effectiveness of our
method on tracking human lower body parts. Moreover, a detail
comparison with current tracking methods is presented.

Index Terms—human pose, particle filter, biomechanics, 2D
articulated model, bipedal motion, video surveillance.

I. INTRODUCTION

UMAN motion modelling is one of the most active areas

in computer vision. It can be defined as the ability to es-
timate, at each frame of a video sequence, the position of each
joint of a human figure which is represented by an articulated
model. Because of the 3D nature of human motion, tracking
methods based on 3D anthropomorphic articulated models
have proved to be the most effective [14], [15], [16], [17], [18].
Their applications include analysis of human activity [55],
entertainment, ambient intelligence and medical diagnosis to
name a few. However, their main drawback is they generally
rely on data capture synchronously by several cameras which
have been accurately calibrated. Therefore, these techniques
are unpractical for applications targeting unconstrained envi-
ronments such as video surveillance [7], [6]. The alternative is
usage of tracking methods based on 2D models which cannot
deal by themselves with the intrinsic ambiguity of projected
3D postures, self occlusions and distortions introduced by
camera perspective. Therefore, they are usually restricted to
well defined motions and specific camera views; however these
constraints reduce their value in many real applications.

We propose a “double tracking” strategy to accurately track
simultaneously both the position of the body and its articulated
motion. Position is tracked by a Kalman filter, while tracking
of human body parts is achieved using a set of particle filters
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[19], [14], [57], which iteratively refine their solution. The key
contribution of this method is that it relies on a generative
approach based on a 2D model constrained only by human
biomechanics. The inclusion of biomechanical knowledge
about bipedal motion significantly reduces the complexity of
the problem. This is achieved by the detection of the pivot foot
- i.e. the foot which is static during a step - and its trajectory
during a whole step.

In this work, we concentrate our effort on tracking the legs
of a subject since the other body parts do not benefit from
biomechanics constraints. Our results are evaluated against
the HumanEva data set, which is becoming the standard for
assessing human body tracking algorithms [5], and outdoor
data from Sidenbladh [46]. After a brief description of the state
of the art in human body part tracking, we present an overview
of our methodology. Then we detail the key algorithms and
the biomechanics constraints we use. Finally, after presentation
and evaluation of our results, conclusions are drawn.

II. RELATED WORK

Tracking complexity increases exponentially with the num-
ber of targets when their motion is not independent from
each other as it is the case when dealing with articulated
objects. Articulated models have been shown to be essential
tools to handle tracking and detection tasks by reinforcing
motion constraints in either the 2D [43] or 3D space [13] so
that motions of subparts are interrelated. Several approaches
have been investigated to alleviate this challenge, such as
dynamic programming [1], annealed sampling [20], partitioned
sampling [17], eigenspace tracking [42], hybrid Monte Carlo
filtering [21] and bottom-up [8] approaches.

Approaches to vision-based human motion analysis can
broadly be divided into generative and discriminative. The
first category explicitly uses a human body model [24], [25],
[26], [27], [28], [29], [30], [20], [32] that describes both visual
and kinematic properties of the human body. Discriminative
approaches [34], [31], [33], [35], [36], [37], [38], [39], [40],
[41], [42] learn the mapping from image space to pose space
directly from carefully selected training data. Since discrimina-
tive approaches work in a learned pose space where the dimen-
sionality has been reduced, they are computationally much less
expensive, can potentially be applied in real-time and are more
robust to noise or occlusions. Furthermore, discriminative
approaches allow the recovery of poses with less information



which make them more suitable for monocular application.
However, they have a serious drawback: their accuracy relies
on the similarity between the posture to recover and data used
in the training data set. In addition, their performance tends to
decrease when the variety of activities used in a training set
increases [56].

Independently of the chosen modelling strategy, another
key decision has to be taken regarding the dimension of the
body model, i.e. 2D or 3D [29]. The first option involves
working directly with the 2D features derived from the images.
This has been successfully applied for constrained types of
movements, such as walking parallel to the plane of the
image and periodic motions. Nevertheless, their performance
decreases significantly for unconstrained and complex human
actions which include movements out of the camera plane (e.g.
wandering, making gestures and turning) which produce fre-
quent self-occlusions. Generally, 2D discriminative approaches
are more robust when dealing with self-occlusions. However,
prior knowledge about either the movement or the viewpoint
is required to drive correctly their 2D models.

Many techniques based on 2D models have been proposed.
In [1], an approach that analyses subparts locally is proposed
for visual tracking of articulated models while reinforcing the
structural constraints between different subparts. It combines
a dynamic Markov network, which characterises the dynamics
and the image observations of each individual subpart and mo-
tion constraints based on a Mean Field Monte Carlo (MFMC)
in which a set of low dimensional particle filters interact
with each other and solve the high dimensional problem
collaboratively. Ju et al. [43] propose a cardboard model in
which the human limbs are modelled by a set of connected
planar patches. By constraining the parameterised motion of
the patches in the image, the articulated motion is reinforced.
Optical flow is used as feature to track the limbs as well as
to estimate the viewpoint. Results confirm that 2D patches
are able to track a limb not subject to occlusions if the
viewpoint has been determined. Rehg et al. [44] describe
a two-dimensional scaled prismatic model (SPM) for figure
registration, which deals with variations in rotation and depth.
SPM reduces significantly the number of singularities that
appear due to the bidimensional projection of the 3D pose
and does not require detailed knowledge of the 3D kinematics.
Although they demonstrate the application of the model for
motion capture from movies, only certain types of movements
can be tracked and the system fails for fast movements. In
[2], Random Sample Consensus (RANSAC) and Maximum
Likelihood Estimation Sample Consensus (MLESAC) algo-
rithms are incorporated in a planar patch tracker like feature
weights to perform robust tracking. In [3], Noriega and Bernier
propose a planar-patch articulated model, which is a loose
limbed model, including attraction potentials between adjacent
limbs and constraints to reject poses resulting in collisions.
Compatibility between model and image is estimated using
one particle filter per limb, while compatibility between limbs
is represented by interaction potentials. The joint probability
is obtained by belief propagation on a factor graph. The main
drawback of all these 2D models is their usage is restricted
to specific types of motions which are usually linear and seen

from a specific viewpoint.

On the other hand, 3D methods [14], [15], [16], [17], [18]
can be considered as more general purpose approaches since
they provide a well-pose solution to tracking a 3D object. In
particular, this enables taking advantage of a large amount
of available prior knowledge about the kinematics, shape
properties and biomechanics of human body and gait. This
information makes the problem more tractable and permits to
predict events such as self-occlusions. However, the fact that
3D models must be projected into the image plane has two
consequences: first, in addition to the larger dimensionality of
the model, projections make 3D tracking a computationally
expensive methodology. Secondly, a constrained environment
is required: cameras have to be calibrated and the transfor-
mation between the image plane and the 3D world has to be
known. Consequently, they are not suitable for applications
like video surveillance, where real time tracking is expected
and camera calibration is not practical.

Kaadiaris and Metaxas [30] consider a multi camera system
to cope with 3D model-based body part tracking. Kalman
filter is applied to predict the location of each limb. The
correspondence between the contour in the image and the
projection of the 3D shape is used as likelihood function.
Gavrila and Davis [29] extended this methodology to a 22
degree-of-freedom model. Hunter et al. [45] build a model
composed of 5 ellipsoids with 14 degrees of freedom where a
particle filter was successfully combined with a 3D articulated
model. Probably one of the most important papers in this field
is the one presented by Deutscher, Blake and Reid [20]. It
is not only the most important generative approach but also
the method of reference used to benchmark new algorithms.
They propose a modified version of particle filter to estimate
efficiently the multi-modal distribution of the human body
articulated model in a huge dimensional space. The main
drawback is the prohibitive computational cost associated
with the processing of each frame. Sidenbladh, Black and
Fleet [46] present another relevant probabilistic method for
tracking 3D articulated human figures in monocular sequences.
It is based on a generative model of appearance, a robust
likelihood function which works out gray level differences, and
a prior probability distribution which introduces knowledge
about human gait and joint angles. Moreover, valid 3D human
motions are constrained by prior probability distribution over
the dynamics of the human body.

Recently, discriminative approaches based on latent spaces
and manifolds have achieved a high popularity [53], [54], [47],
[41]. This is mainly because they reduce the computational
cost by constraining the space of possible poses with prior
information. Elgammal [31] proposes a manifold to relate sil-
houettes with 3D poses. A different 1D manifold is learned per
view and activity. In [40], two different regression algorithms
are used for the forward mapping (dimensionality reduction)
and inverse mapping. The representatives used in the regres-
sion are chosen in a heuristic manner. In [39], GPLVM and a
second order Markov model are used for tracking applications.
The learned GPLVM model is used to provide model prior.
Tracking is then done by minimising a cost of 2D image
matching, with the negative log-likelihood of the model prior



as the regularisation term. Both [40] and [39] advocate the
use of gradient descent optimisation techniques; hence, the
low-dimensional space learned has to be smooth and accurate
initialisation is required for the success of such techniques. An
alternative approach [47] employs the GPLVM in a modified
particle filtering algorithm where samples are drawn from the
low-dimensional latent space. The smoothness enforced in the
low-dimensional space by the learning algorithms in these
three papers works well for tracking small limb movements,
but may fail when large movements occur over time.

This overview of human pose recovery methodology in-
forms us about the design of a solution on the basis of the
requirements and characteristics of the particular problem that
we want to solve. Since our objective consists in recovering the
human pose in unconstrained environments, where the subject
can perform any kind of movement and where initialisation
should eventually be automated, we are constrained to choose
a generative approach based on a 2D model. However, unlike
the previous work within this framework which was limited
to specific types of motions, we propose an approach able to
deal with variations in rotation and depth so that it can be
applied to real life data. This is achieved by constraining the
2D model, which is designed to tackle 3D motion patterns such
as changes in the pose of the object with respect to the camera,
by using specific knowledge about human biomechanics and
gait analysis.

III. DOUBLE TRACKING STRATEGY
A. General Principle

In previous work [48], we proposed a methodology where
the global location of the person, as well as the relative
pose of the limbs, were tracked simultaneously. Although this
integrated strategy was elegant, it showed some inefficiency
since an error of global location affects directly the process of
limb pose recovery.

To deal with this problem, we propose a double tracking
strategy (see Figure 1). The estimation of the pose of the limbs
Xjeg 1s calculated using the combination of two trackers: one
tracks the global location of the person X¢*!, and the second
one recovers the relative pose of the limbs X, g

Xieg = X"+ X[, (1)

As first tracker, we use a Kalman filter which has been shown
as a very efficient paradigm to track pedestrians in visual
surveillance applications [52]. For body part tracking, we use
a set of particle filters.

Human articulated motion is highly multi-modal and this
non-Gaussian characteristic is amplified in the image plane
by the camera perspective. Therefore, a tracking framework
capable of working with non-linear distribution is required.
Since particle filters have been successfully applied for this
purpose [19], this algorithm is at the core of our tracking
framework. A detailed explanation about particle filtering is
shown in [19]

Once the first tracker has obtained an estimation of the
location of the person using a motion blob, this information
is introduced as prior knowledge in the proposal distribution
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Fig. 1. Principle of double tracking strategy

of the particle filter. Thus, the particle distribution in the
next prediction step is guided by the global location in the
(x,y)-coordinates [xe‘”t, y”t]. Moreover, limb sizes of the new
hypotheses are estimated by taking into account blob height
changes between two frames [°**. In this manner, tracking
can recover from incorrect estimations from the particle filters
without being limited to the result of the first tracker. Indeed
the dynamic model of the new hypotheses gives the ability
to correct the first tracker estimation, which is only used as
a guide or “soft” constraint that helps to put the hypotheses
near to the global optimum.

The limb model employed is identical to the one proposed
in [48], but here the spatial coordinates have been normalised
with respect to the central point of the line which links both hip
points, and the size parameters have been normalised regarding
the human height of the blob.

Limb tracking is based on a set of particle filters to fit
a 2D articulated model on each frame of a video sequence.
In addition, we take advantage of a biomechanics constraint
inherent in human bipedal motion: during a ‘step’, one leg
pivots around a single point. This allows us dealing with many
more motions than other techniques which rely on training on
a specific activity. Since we are able to detect the position
of this point, this constraint is integrated in an asymmetrical
2D model where the two legs are treated differently. Finally,
model fitting is performed after different trackers have been
applied successively.

Initially, a ‘standard’ particle filter process operates to track
lower limb locations until the end of the ‘step’. Due to the high
dimensionality of the problem and the ill-conditioned model,
it may not be able to produce satisfactorily tracking. In order
to refine the tracking of the articulated model, two assistant
particle filters are then launched in parallel using information
intrinsic to the ‘step’ of interest. The main reason for using
two trackers instead of one is to handle the degradation and
potential divergence of tracking over time.

To take advantage of the ‘pivot’ point constraint and trajec-
tory information, we propose to rely on data captured during
a full ‘step’ before completing the tracking task. While a
short delay is introduced - typically around 10 frames (i.e.
0.5s) - in a real time system, this allows processing a wide
range of human activities without loss of accuracy. Moreover,
since this delay does not increase, if suitable processing
power is available, the whole system can operate on-line.



Although some actions, such as running or jumping, break the
‘pivot’ constraint during short periods of time and the ‘pivot’
point can be momentarily occluded, this can be detected and
handled without affecting significantly the proposed tracking
framework, since the ‘standard’ particle filter is still able to
estimate the poses without those constraints.

B. Biomechanics constraints for human motion tracking

Most human motion tracking methods rely on constraints
such as specific activity, constant velocity, linear or periodic
motion which critically impact on their accuracy and/or their
genericity. Study of human biomechanics, however, reveals
that human motion itself provides some explicit constraints.
In this section, we show they can be utilised to simplify
the task of tracking human body parts. Walking is a very
common human activity whose many other motions, such as
loitering, balancing and dancing, can be seen as derivatives and
where the underlying mechanics of walking can be applied.
All these bipedal motions are based on a series of ‘steps’
defined as one leg ‘swinging’ around a ‘support’ leg whose
foot, or ‘pivot’, stays in contact with the ground at any instant
[22]. Therefore, the detection of this pivot point from a video
sequence provides a very important biomechanics cue which
is present in most motion processed by the tracker.

Knowledge of the precise position of the pivot foot also
allows using different strategies for tracking either the ‘sup-
port’ or the ‘swinging’ leg, which enhances the power of our
2D model. Moreover, positions of consecutive striking feet
provide some information about the subject’s trajectory in
the image plane which supplies clues regarding the relative
camera-subject position. Consequently, detection of this per-
mits a significant reduction of the complexity of the tracking
task.

In addition to the ‘pivot’ foot constraint, the ‘support’ leg
has another property: upper and lower legs are supposed to
be aligned during the pivot motion around the static foot.
Therefore, estimate of the locations of the associated knee
and hip can be refined if they do not form a straight line with
the pivot foot.

In our framework, the static foot is detected using the
algorithm proposed in [4]. It is based on the biomechanics of
gait motion. During the strike phase, the foot of the striking
leg stays at the same position for half a gait cycle, whilst the
rest of the human body moves. The pivot foot is detected using
a low-level feature: corners produced by the Harris corner
detector. Outliers due to cluttered backgrounds are filtered
out by using a background subtraction algorithm. Corners
associated to the pedestrian of interest are accumulated across
several frames (i.e. 20 in our implementation). The region
where the leg strikes the ground must have a high density
of corners. Although this approach is usually efficient (when
an individual motion is parallel to the camera plane, the static
foot is detected easily), motions towards or away from the
camera produce many points seen as static on the body due to
the influence of the perspective. We deal with this by removing
outliers and false positive by maintaining both temporal and
spatial coherences of the ‘pivot’ point.

Corners, C, are accumulated across several frames using
equation (2):

C =
t

N

(H (1) A L) 2
=1
where H is the output of the Harris corner detector, I; is the
original image at frame ¢, L; is the pedestrian blob at frame
t and A is the logical conjunction operator. Although we only
consider one pedestrian, as commented in the introduction
of this chapter, the pivot point detection algorithm could
be extended to deal with multiple people by selecting an
appropriate association algorithm.

Dense areas of corners are located using a measure for
density of proximity, d,. The value of proximity at point p
depends on the number of corners within the region Iz, and
their corresponding distances from p. R, is assumed to be a
circular area centred in p, whose radius, 7, is determined as
the ratio of total image points to the total of corners in C.
Corner proximity values, d,, are computed for all regions R,
in C using equation (3).

{ b= 3
d;, — d;fl I\i/1
where d; is the proximity value for rings of radius ¢ away
from the centre p, and N; is the number of corners at the
distance ¢ from the centre, rings are single pixel wide.

Starting from a radius r, the process then iterates to accu-
mulate all the densities for the subregions I2,, for all points p
into a matrix to produce the corner proximity matrix of the
frame. Highest values in the matrix generally correspond to
the heel strike areas.

C. Position tracking based on Kalman filter

Using a Kalman filter we track the bounding box of
the person under observation. The state vector is x; =
[33696757 yext7 ‘,te;zt7 yewt’ lear:t7 l'ea:t]’ where [33696757 yext] is the
global location in the (x,y)-coordinates, [¢®! is the blob height
and i:,y,i their derivatives. The likelihood function is based
on a motion detector that extracts the blob corresponding to

the subject.

D. Multiple particle filter tracking based on 2D articulated
model

1) 2D asymmetrical articulated model informed by trajec-
tory information: Our model aims to track simultaneously the
relative positions of the different parts of the limbs. Thus,
the tracker state vector is composed of the image coordinates
of the hip points and the parameters which model the relative
motions and positions, such as angles and lengths in the image
plane. In order to introduce the biomechanics constraints,
which rely on a relative independence between both legs, both
hip points are employed as references and the angles of both
legs with respect to the hips are included in the state vector.
The state vector of each leg is described by the following
equation:



/ . .
Xieg = [Thips Ynips Thips Ynips Onip—thigh, Oknees
ehipfthigha akneea lfemum lshin; lfemur7 lshin} (4)

where = and y are the coordinates in pixels, 6 is the angle
between a limb and the z axis and [ is the length of the limb
(see figure 2).

By including the global location of the person provided by
the Kalman Filter, we obtain our articulated model state in
absolute image coordinates substituting the Eq. 4 in Eq. 1:

ext ext . .
Xleg = [I + Zhip, Y+ Yhips Thips Yhip,
ahip—thi,ghv oknee; ahip—thi,gha oknee; (5)

" L .
lfemur 1T 7lshin 1T 7lfemu7"7 lshin]

Using the pivot point as a constraint, the “support” leg
is first estimated. Then, the ‘swinging’ leg is calculated. To
perform a robust estimation, the hip point position of the
“support” leg is used to constrain the other hip point. The
distance between the two hips is set at a fixed anthropometric
value Dy during initialisation as a proportion of the width of
the legs. Moreover, we assume the two hips points share the
same gy coordinate where the y-axis is defined as the axis which
goes along the dorsal spine of the subject. This assumption
is reasonable if the camera is sufficiently far away from the
subject and does not provide a zenithal view, which is usually
the case in visual surveillance. Although generally this y axis
corresponds to the vertical axis of the image, its direction can
be determined more precisely by calculating the momenta of
the human figure where the y-axis is the larger axis of the
ellipse that surrounds the subject.
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Fig. 2. 2D articulated model.

Due to its nature, 2D tracking allows a higher flexibility and
simplicity of use and initialisation than 3D tracking. However,
in 2D it is not possible to introduce traditional constraints,
such as motion dynamic or kinematics. Instead, we transfer
3D properties to the 2D world. In the 3D world, the distance
between the hips remains constant over time. However, when
this fixed distance is projected in the camera plane, its value
is changed by two different parameters: the location and
the orientation. Whereas the location introduces a factor of
scale which is estimated with the global size of the legs, the
orientation distorts this distance in a non-linear way which
depends on the view point.

Because of the stochastic nature of our tracking algorithm,
the exact value of this distance is not required. Given the poses
of the hips at the beginning and the end of a step, values of
the hips between these two frames are estimated. In fact, the
distance is correlated to the angle of the step trajectory in a
non-linear manner as shown on Figure 3a. We approximate
this correlation function using a function which models a S-
curve.

1— e—a@
1+ef

where Dy is the maximum size of the hip distance with respect
to the size of the leg (in our implementation, it is half the
value of the sum of the thigh widths), # is the angle between
the trajectory and the z axis in the image plane and « is an
empirical factor which controls the speed of the curve descent.

Therefore, hip distance is estimated at each frame based on
the trajectory angle. This is performed by fitting cubic splines
to all pivot points (see figure 3a,b).

D(0) = Dy - (6)

3D World
Zenital View

Image Plane

(b)

(a) Interpolated trajectory (blue dots) of the pivot points (red and

Fig. 3.
green dots). (b) Correspondences during a turn between the hip distances in
a zenithal view and in the image plane.

At the end of the step, the new pose of the ‘swinging’ leg is
known, i.e. positions of hip, knee and ankle. Therefore, sizes
of both limbs at the beginning and end of the step are available.
Their values are used to constrain limb size parameters during
the whole step.

Consequently, our model allows introducing two gait con-
straints which help both loop and back tracking processes
to improve the results of the ‘swing leg’: the size and the
hip distance constraints. Since this information is known a
posteriori, it can only be applied to the auxiliary tracking
process.

2) Multiple particle filter tracking: One of the most chal-
lenging problems of 2D tracking is to deal with the perspective
effect which amplifies changes in trajectories and, therefore,
can create major variations in the target’s size. Therefore, the
usage of a simple first order model does not allow representing
size dynamics adequately. Since our tracking framework is
based on a full ‘step’ where heel strike positions are known,
the final position of a step is partially reinitialised. Conse-
quently, information is available to define the trajectory of the
target during each step. Moreover, new tracking constraints
are derived regarding maximum and minimum apparent limb
sizes and distances between the hip points during the step.

This last constraint provides a reference point for the
“swing” leg similarly as the pivot point restricts the location



of the ‘support’ leg. These new constraints, which were
not initially available when the standard tracker operated,
reduce significantly the complexity of the tracking problem.
Furthermore, when using a particle filter based tracker, the
probability of divergence increases after each prediction: the
closer a frame is to the initialisation frame, the more accurate
the estimation is likely to be.

In order to take advantage of these new constraints and
tackle this inherent tracker weakness, we propose that once
the standard tracker has processed a full “step”, two new
trackers are launched in parallel. These trackers have the
same configuration and dynamical models enhanced by the
constraints extracted from the output of the standard tracker.
Whereas the ‘forward’ tracker starts from the first frame of
the step, the ‘backward’ tracker begins at the last frame and
tracks targets backwards.

Our algorithm is described in Figure 4. The observation
process provides the information to the three concurrent
particle filters. At time ¢, the standard particle filter (blue
segment), makes a first estimation p; of the pose z; during
the current step. Simultaneously, the loop particle filter, or
“forward” tracking (orange segment), refines the estimation
of the previous step poses p? by means of the introduction
of constraints, i.e. the size and the trajectory, that are only
known once the step is completed. In parallel, a new back
particle filter, or“backwards” tracking (green segment), also
reestimates the same previous step p; but processing from the
last pose to the first. When forward and backwards trackers
meet, a decision should be done to decide which one is likely
to refine the most the initial tracking. The winner tracker
will continue its tracking until reaching a time step when its
contribution is expected to be worse than the opposite tracker.
At that point, the pose estimation p; of the whole step is
accepted as definitive.

Observation
Colour Model Colour Density zl| ) LS
Heel Strike | (Gradient Densit p( 22 xf]
Detection Estimation
pgflm - A
; i x; o {xl ‘xt} i 1
{xH,a)tiL ] oy ] P,
Propagation Weighting Resampling 97 i
X,
Particle Fitr | | por
2 [ : 2
Py . \ - o/ . P
; ; Propagatlon] ‘ Weighting Resampling t4i P
{x1—1=”71—1} 4{’%”1
Loop Particle Filter
Back Particle Filter
3

t

el . P
Resampling Weighting Propagation
{xi,01

Fig. 4. Multiple particle filter framework.

A comparison criterion has been designed to decide at which
frame the backward tracker is more likely to provide more
accurate estimates than the forward tracker. First, although the
particle filter does not provide an actual estimation for each

frame, a weighted mean estimation is extracted combining all
the hypotheses. By using this temporal estimation, the mea-
surement of its likelihood function is obtained. Secondly, we
express the intuitive idea that a tracker’s reliability decreases
after initialisation by introducing an exponential decreasing
function that multiplies the estimation likelihood (see Figure
5). Therefore, estimation at a given time step about the most
accurate tracker can be made according to the sign of the
following quantity, q:

q=p(z|E[2}]) - fra(T —t) — p(z| E[]]) - fra(t) (D

where p(z¢|E[z?]) and p(z¢|E[z]]) are respectively the mea-
surement values (based on colour and edge likelihoods) of the
backward and forward trackers, T is the length of the step
in frames, ¥ and x{ are the state vectors of the backward
and forward tracking respectively, and f,.; is the decreasing
function that takes into account the reduction of reliability over
time

fret(t) = e7PO=D (8)

where [ is an empirical factor which models accuracy degra-
dation. It is set to 1 for walking sequences.
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Fig. 5. Stopping criterion established to stop the auxiliary trackers by

combining edge and colour likelihoods.

3) Predictive motion model and likelihood function of par-
ticle filters: We use simple first order dynamic models to track
location, size and angular parameters since they are sufficiently
accurate for modelling motion between successive frames
during a single step and motion non-linearities is taken care
of by the biomechanics constraints previously presented, i.e.
the hip distance D(6) and the size constraint in the auxiliary
tracker.

We use a simple constant-acceleration dynamic model
X feg = F - X!~ We can express F as the dynamic matrix:

leg
1 0 dt 0 0 0 0 o o0 0 o0 0
0O 1 0 dt 0 O 0 o 0o o0 o0 0
o o 1 o 0o 0 o o 0 0 o0 0
0o o0 o 1 0 0 o0 o 0 0 o0 0
o o0 o 0 1 0 dt 0 0 0 0 0
F = o o0 o o0 0o 1 0 dt 0 0 0 0 (9)
- o o o o o o 1 o 0o o o0 0
o o o o o o0 o 1 0 0 o0 0
0o o0 o o 0o 0o o 0 1 0 dt o0
o 0 o0 o 0o o0 o o o0 1 o0 adt
o 0 o0 o 0o o0 o o o o 1 0
o 0 o0 o 0o 0 o o 0o o0 o0 1

where dt is the time lapse between two frames.

An adequate likelihood function must be applied to track
the targets. In order to weigh each hypothesis, several visual
features are combined, i.e. colour and edges (see Figure 6).



Colour is a discriminative feature which differentiates between
object and background, but also between objects. Moreover,
it is pose invariant. Edges also provide a good visual feature
due to the continuity of the human limbs. Because of their
invariance to colour, lighting and pose, they are especially
useful to deal with self-occlusions between limbs [46].

Since we assume these features are independent from each
other, we can combine them to obtain the observation proba-
bility:

p(2e|xe) = P(Z:H»Tt) p(zt2|xt) (10)

where z} and z7 are the colour and edge observations respec-
tively and z is the state vector, x; = [Xll:gt, Xf;gght].

Colour features are obtained by sampling each region by
a grid and expressing the colour information by RGB values
subsampled to 4 bits per channel to filter out noise and small
variations. The colour density is measured by comparing the
colour feature of each region of the articulated model with its
corresponding colour model. It is evaluated by estimating the

Bhattacharyya coefficient between their histograms.

H
plzle) = T QO Vs)-a(n)

VreR(zy) h=1

Y

where 7 is each body part belonging to the set R of regions
from the articulated model x;, H are all the histogram bins,
s(h) is the current histogram, ¢(h) is the reference model and
o, > 0 is an empirical factor to strengthen the discriminative
power of the feature.

A gradient detector is used to detect edges, and the result is
thresholded to eliminate spurious edges. The Canny algorithm
is applied for this purpose. The result is smoothed with a
Gaussian filter and normalised between 0 and 1. The resulting
density image P assigns a value to each pixel according to its
proximity to an edge using the Euclidean distance transform.

1 N
) =TI 0P

VreR(xt) i=1

12)

where I, is the original image in RGB, r represents each of the
regions which compose the articulated model, N are all the
pixels which compose the region and a, > 0 is an empirical
factor similar to «,. By default, both factors are assigned the
same value. However, their weight can be adjusted to bias
the probability density function towards the feature which is
believed to be the most informative in a given scene.

IV. RESULTS

Our approach was evaluated over data sets which have
been produced as benchmarks to the scientific community to
evaluate and compare different tracking and pose recovery
methodologies. First, we have used the HumanEva (HE) data
sets I and II, where motion capture and video data were
collected synchronously [5]. Since cameras are calibrated,
motion capture data provides not only the groundtruth for 3D
pose recovery, but also for 2D pose recovery by projection
on the 2D sequences. A standard set of error metrics is also
defined for evaluation of both pose estimations and tracking

Fig. 6. Configurations of the pixel map sampling points for the colour and
the edge measurements. The sampling points for colour measurements are
defined by a grid sampling these regions, whereas the edge measurements
are located along the contours of the regions which compose the articulated
model.

algorithms. Secondly, we have tested our solution with a well-
known outdoor sequence [46], where groundtruth was obtained
by annotating carefully the location of the limbs by hand.

A. Test sets and evaluation metrics

Our algorithms were tested with 3 indoor sequences from
HumanEva data sets, i.e. S2_Walking_I1_C1, S2_Combo_2_CI
from HE I and S2_Combo_1_CI from HE II, and the outdoor
Sidenbladh sequence. Since the S2_Combo_1_C1 from HE II
sequence is especially long, we divided it in two parts: part
1, which is at the beginning of the sequence and corresponds
to walking, and part 2, which is at the end and shows some
balancing, see Table I for details. These sequences were
chosen to include a variety of movements (walking a complete
circle and balancing) seen in indoor and outdoor environments
from different points of view and happening mainly outside
the camera plane (see Fig. 9, 10 and 13).

Since the pose of a human body can be represented using
M virtual markers, the state of the body can be written as
X =x1,29,...2), where x,, € Ro (2D body model is used)
is the position of the marker m in the image. The error between
the estimated pose X and the ground truth pose X can then be
expressed as the average absolute distance between individual
markers. To ensure fair comparison between algorithms using
different numbers of parts, a binary selection variable per-
marker A = 51, 527 ) v was added [5]. Therefore, the final
proposed error metric is:

o Ay N Ol =
D(X,X,A)=> =" (13)
m=1 Zi:15i

where 4,, = 1 if the evaluated algorithm is able to recover
marker m, and O otherwise.

For a sequence of T' frames we can compute the average
performance, v .4, and the standard deviation of the perfor-
mance, 0.4, using the following equations:

T
1 PN
Vseq = T ZD<Xt7Xt7 At)

t=1

(14)

1 PR 2
Oseq = T Z |:D(XtaXta At) - Vseq:|
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B. Experimental results and discussion

We report experiments conducted first with the HE se-
quences and then with the outdoor data. Although experiments
were performed with a number of particles in the Particle Filter
ranging from 200 to 500, their number did not affect tracking
accuracy. Since the pivot point detector can produce erroneous
locations - an average error of 20 pixels was measured for the
HE sequences -, this affects negatively the tracking module. To
analyse independently the tracking algorithm, results are also
provided where manual annotation was used to define pivot
points (see Table I): the mean error increases from 13.5 pixels
to 15.1 pixel when tracking is combined with automatic pivot
point detection.

Figure 7 shows a frame by frame comparison of pose
reconstruction errors between a single particle filter (without
back-tracking or feedback) and two trackers built on our
multiple particle filter framework with or without the addition
of a Kalman filter, respectively called double or integrated
trackers. Not only does our system perform significantly better
than a single particle filter, but this chart also highlights one
of the strength of our proposition: tracking is able to recover
from serious divergence because of the partial reinitialisation
provided by detection of pivot points and trajectory constraints.
For example, although the integrated tracker starts diverging
around frame 200, where limbs reach their apparent maximum
size and are self-occluded, legs are accurately labelled on
frames 219 and 242 (see Fig. 7 and 9). The figure also
shows that the double tracker (T2) is more accurate than the
integrated one (TI). However, since T2 relies on blob position,
its incorrect estimation, e.g. around frame 250, may temporary
cause poor pose reconstruction until the tracker’s recovery.
Analysis of the data of the column “Automatic pivot point
detection” in Table I, which corresponds to the practical usage
of our system, reveals that the double tracking strategy not
only generally improves the mean accuracy of recovered poses,
but also is much more stable than the integrated tracker (TI):
T2 is in average 14% more accurate with a standard deviation
35% smaller in the case of automatic pose recovery.

Table II shows how our results compare with other tech-
niques used to recover either 2D or 3D poses from the
HumanEva data sets. When authors only provided mean errors
for 3D poses, they were converted in pixels using approximate
relationships between pixel and object lengths for each of the
HumanEva data sets. Thus, for a subject height between 250
and 410 pixels and an assumed human height of 1.80 meters
[11], a 1 pixel error is equivalent to an error of 4.4-7.2 mm,
depending of the position of the person in the image and the
perspective.

Most methods perform similarly to our on the HumanEva
data sets, i.e. a pixel error in the 12-15 and 17-20 ranges
for respectively HE I and HE II. Howe [9], [10], Poppe et
al. [11] and Okada and Soatto [50] present example-based
approaches to pose recovery, but use very different image
descriptors, respectively silhouettes and histograms of oriented
gradients (the last two papers). [49] has recently proposed
a spatio-temporal 2D-model that allows a monocular pose
recovery where the 2D limitations are tackled by the use of a
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Fig. 7. Tracking error for each frame of the part 1 of S2_Combo_1_(C1) (HE
II) sequence. Magenta and dark blue vertical lines are respectively the manual
and automatic detection of the begining/end of a ’step’. Red dashed-dotted
line is the error using a single particle filter, green dashed line shows the
error using the multiple particle filter framework with the integrated tracking
strategy (TI) and blue solid line shows the error using the multiple particle
filter framework with the double tracking strategy (T2).

Sequence Frames Absolute Standard
Mean Error | Deviation
[in pixels] [in pixels]

Sidenbladh 153 8.45 4.74

Error [pix]

D 1 1 1 1 1 1 1
1] 20 40 60 a0 100 120 140 160

Frame

Fig. 8. Numerical results for H. Sidenbladh sequence (Two trackers strategy)

probabilistic transition matrix. Finally, the hierarchical particle
filter proposed by Husz et al. [13] relies on a motion model
based on action primitives which predicts the next pose in a
stochastic manner. Although their tracker performs similarly
to the other methods when 2 or more camera sequences
are available, its performances degrade significantly when
processing a single sequence. The main drawback of all these
methods is they are action specific and therefore they are
not able to track individuals which display either unexpected
motions or a combination of motions. The only approach
which presents much more accurate results is proposed by
Lee and Elgammal’s [42]. Their work is based on a manifold
whose topology is learned using a training set. Although they
can claim a joint mean accuracy of 31 mm, i.e. 5 to 7 pixels,
their approach relies on an even more constrained scenario:
walking sequences or cyclic activities that have to be learnt
explicitly. The outcome of this comparison is, first, that, since
our framework is based on a generative approach, our approach
is the only one which does not require any training phase,
and therefore, is able to recover human poses of unusual
movements as shown in Figure 10 and 12. Secondly, although
our scheme does not rely on a constrained environment, it is



COMPARISON OF PERFORMANCES OF DOUBLE TRACKING (T2) AND INTEGRATED TRACKING (TI) STRATEGIES USING EITHER MANUAL OR AUTOMATIC

TABLE 1

PIVOT POINT DETECTION

Manual pivot point Automatic pivot point
Sequence Frames Absolute Standard Absolute Standard
Mean Error Deviation Mean Error Deviation
(C1 camera) [in pixels] [in pixels] [in pixels] [in pixels]
T2 TI T2 TI T2 TI T2 TI
S2_Walkingl, HE 1 [6, 418] 17.1 | 17.1 8.9 8.7 165 | 259 | 49 10.9
S2_Combo2, HET | [1661, 2054] | 11.6 7.4 5.8 120 | 9.1 7.1 6.2
S2_Combol, HE II [1, 307] 162 | 25.1 | I1.1 | 124 | 246 | 258 | 11.2 | 123
S2_Combol, HE II [747, 1202] 9.9 2.4 2.3 10.0 | 10.0 1.7 3.1
[ Total [ 1570 [135 [ 146 90 [ 99 [151 [ 176 [ 95 [ 147 ]
TABLE II
COMPARISON WITH STATE OF THE ART
Algorithm Data set | Pix. error Constraints Training | Initialised
Manual pivot HE I 13.2 Bipedal motion No Yes
HE II 15.9 Bipedal motion No Yes
Automatic pivot HE I 17.5 Bipedal motion No Yes
HE I 17.7 Bipedal motion No Yes
Lee et al. [42] HE I 5-7* Activity specific & cyclic Yes No
Howe [9], [10] HE I 12.5 Activity specific Yes No
HE II 18.5 Activity specific Yes No
Poppe et al. [11] HE I 10-14* View and activity specific Yes No
HE II 17-20* View and activity specific Yes No
Husz et al. [13] HE I 33 Single calibrated camera Yes Yes
HE I 14.8 Multiple calibrated cameras Yes Yes
HE II 19 Multiple calibrated cameras Yes Yes
Rogez et al. [49] HE I - View and activity specific Yes Yes
HE II 16.7 View and activity specific Yes Yes
Okada et al. [50] HE I 6-9% View and activity specific Yes Yes
HE II - View and activity specific Yes Yes

* Pixel error estimated from 3D error

able to produce results whose accuracy is similar to most state
of the art techniques.

Finally, our double tracking strategy was tested on outdoor
data (Figure 13). Quantitative results for the Sidenbladh se-
quence confirm the accuracy and robustness of our method
(Figure 8). Since the resolution of this data is about the half
of the HumanEva data set’s, pixel accuracy cannot be directly
compared with those obtained with HumanEva. However, we
could estimate that, at equal resolution, an accuracy of about
17 pixels would be achieved, which is in line with values
shown in Table I. This experiment demonstrates the generality
of our method to environment with different image resolutions,
perspectives and illumination conditions, i.e. indoor and out-
door scenes.

V. CONCLUSION

This paper introduces a novel framework based on a set of
Kalman and particle filters to track human body parts from
a single camera. Its main contribution is the usage of a 2D
articulated model constrained by human biomechanics. We
have shown that such 2D model is as accurate at tracking 3D
motions as 3D models. Not only does the use of a 2D model
reduce the computation complexity of tracking human body
parts, but also simplifies the tracker initialisation. Moreover,
risks of divergence are reduced by our framework capacity of
partial reinitialisation at each step.

As demonstrated in experiments with walking and balancing
sequences, the main advantage of our system is that it is able to
handle any bipedal motion and is not constrained to specific
activities as most other methods. The only limitation of the
system is that the pivot point should not be occluded for an
extended period of time. To deal with this situation, more
advanced reinitialisation methods should be integrated in the
system [S1].
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