HOMODIMER PREDICTION

Pattern Recognition of Symmetrical Protein-Protein Interaction Sites

akanksha.iitkgp.2012@gmail.com, J.Nebel@kingston.ac.uk

Akanksha Srivastava and Jean-Christophe Nebel Department of Computing, Information Systems & Mathematics, Kingston University

Rational

Homodimers constitute 39% of PDB [1] proteins¹.

Homodimer proteins play important role in cellular functions and biological processes.

Pattern Recognition could help in detecting potential homodimer interactions, from a protein sequence, which would allow modelling proteins and aid in drug discovery.

Homodimer Classification

Homodimers Symmetrical refers in which the interface region homodimers consists of same amino acids present at same positions in both chain A and chain B.

Formula used for calculating score

Score = $\frac{1}{2}$ * (A\cap B) * (1/A+1/B)

where,

A is the no. of residues in the interface region of chain A,

B is the no. of residues in the interface region of chain B,

 $A \cap B$ is the total no. of same residues at same position in Chain A and Chain B.

Experiment 1: Binding Site properties of Symmetrical Homodimers

Step 1: Query search in PDB Proteins.

Step 2: Hierarchical Clustering of amino acid residues of interface region of each 8757 PDB

Step 3: Estimate the distribution of number of Binding Sites. See Figure 1.

Step 4: Clustering of all homodimers having one by using Needleman Wunsch binding site Algorithm and scoring matrix based on AA Index. See Figure 2.

Results of Experiment 1

The reasons why the proteins in the said cluster appear as they do:

(a) Predicted family is Fe/Mn SOD family.

Multiple Alignment of sequences from Cluster highlighted in step 4 by using clustalW

This result is in line with SODa [3] which shows that Binding Site predicted is necessary for SOD family.

Experiment 2: Analysis of Specific Homodimer Families

Out of six homodimer families, mentioned by Valdar and Thornton [2], three are analysed in this experiment.

Step 1: Hierarchical Clustering of amino acid of each family using residues clustering parameters as mentioned in Experiment 1.

Step 2: Histogram distribution of homodimers of each family in the Binding Sites (BS).

Step 3: Analysing the binding pattern with maximun number of Homodimers, for example, 2 for each family in this case.

Results of Experiment 2

The binding pattern predicted for TIM family and Cu/Zn SOD family are shown in Figure 3 and Figure 4, respectively.

Binding Site of GST family needs further analysis.

Future Work

- Pattern recognition of Fe/Mn SOD family.
- Finding the fingerprints for the pattern from the primary squences of the above studied families.
- Looking for other homodimer familes having same fingerprints.

References

[1] Berman, H.M. et al. (2000) The Protein Data Bank, Nucleic Acids Research, 28, 235-242. [2] Valdar, W.S.J and Thornton, J, M. (2001) Protein—Protein Interfaces: Analysis of Amino Acid Conservation in Homodimers. PROTEINS: Structure, Function, and Genetics, 42:108-124. [3] Kwasigroch, J.M. et al. (2008) SODa: An Mn/Fe superoxide dismutase prediction and design server.URL: http://babylone.Ulb.ac.be/soda

- ¹ All data based on the PDB release of 11thMarch 2013.
- ² Generated by PyMOL.